A firms demand function is x=200log(20/p).Find the price and quantity where total revenue is maximum
Attachments:
Answers
Answered by
5
To solve this question let us list the necessary logarithmic laws that are relevant to this question given that the equation I logarithmic.
log m/n = log m - log n
log₁₀b = c
10^c = b
x = 200 log 20/p
x = 200 [ log 20 - log P]
Revenue function = R(x)
R(x) = p [ 200(log 20 - log P)]
200p log 20 - 200 log p
At maximum revenue :
d(x) / d(p) = 0
d(x) / d(p) = 200 log20 — [ 200 log p + 200p × 1 / pln10]
200 log 20 — 200 log p — 200 / ln10 = 0
Divide through by 200
log 20 — log p —1/ln 10 = 0
log 20 — 1/ln 10 = log p
1.3010 — 0.4343 = log p
0.8667 = log p
p = 10⁰°⁸⁶⁶⁷
P = 7.36
x = 200 × log 20/7.39
200 × 0.4342 = 86.84
The price = 7.36
The quantity = 86.84
log m/n = log m - log n
log₁₀b = c
10^c = b
x = 200 log 20/p
x = 200 [ log 20 - log P]
Revenue function = R(x)
R(x) = p [ 200(log 20 - log P)]
200p log 20 - 200 log p
At maximum revenue :
d(x) / d(p) = 0
d(x) / d(p) = 200 log20 — [ 200 log p + 200p × 1 / pln10]
200 log 20 — 200 log p — 200 / ln10 = 0
Divide through by 200
log 20 — log p —1/ln 10 = 0
log 20 — 1/ln 10 = log p
1.3010 — 0.4343 = log p
0.8667 = log p
p = 10⁰°⁸⁶⁶⁷
P = 7.36
x = 200 × log 20/7.39
200 × 0.4342 = 86.84
The price = 7.36
The quantity = 86.84
TheAishtonsageAlvie:
Great answer sir ^_^
Similar questions