Biology, asked by cmd3307, 3 months ago

A fish swimming at a constant speed of 0.5 m/s suddenly notices a shark appear behind it. Five seconds later, the fish is swimming in the same direction at a speed of 2.5 m/s. Calculate the fish’s acceleration?

Answers

Answered by tashuAryan
6

Explanation:

because the formula is

a= v- v'/ t

; a = acceleration

v= final speed

v'= starting speed

t= time

Attachments:
Answered by Sagar9040
5

\huge\mathbb\fcolorbox{purple}{Green}{☆Quuestion♡}

A fish swimming at a constant speed of 0.5 m/s suddenly notices a shark appear behind it. 5 seconds later, the fish swimming in the same direction at a speed of 2.5 m/s. Calculate the fish’s acceleration. *

\huge{\textbf{{{\color{navy}{Ꭺŋ}}{\red{ѕw}}{\pink{єr♤࿐}}{\color{pink}{:}}}}}\bf\huge{\purple{╔════════♡═╗}}

Given : A fish swimming at a constant speed of 0.5 m/s [ as , Initial Velocity ( u ) ] , After noticing the shark fish's speed is 2.5 m/s [ as , Final Velocity ( v ) ] & Time taken is 5 seconds [ as , Time ( t ) ]

Exigency To Find : The Acceleration of fish ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀The initial velocity ( u ) of fish is 0.5 m/s .

⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀The final velocity ( v ) of fish is 2.5 m/s

⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀Total Time taken ( t ) is 5 seconds

Lets Finding  Acceleration  of fish! :

\begin{gathered}\dag\:\:\pmb{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar \:\: \bf Acceleration \: : \: \sf The \: rate \:of \: of \: change \:of\: velocity\:is \:known \: as \: Acceleration \:. \:\\\\ \qquad\maltese\:\:\bf Formula \:for \: Acceleration\:: \\\end{gathered}

\begin{gathered}\qquad \dag\:\:\bigg\lgroup \pmb{\bf{\;\: Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\:\: }}\bigg\rgroup \\\\\end{gathered}

⠀⠀⠀⠀Here , u is the Initial velocity, v is the final velocity & t is the time taken .

\begin{gathered}\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\qquad \:\\\\\end{gathered}

\begin{gathered}\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: v \:\:- \:\:u\:\:}{t}\qquad \:\\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: 2.5 \:\:- \:\:0.5\:\:}{5}\qquad \:\\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\dfrac{ \:\: 2\:\:}{5}\qquad \:\\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:\cancel {\dfrac{ \:\: 2\:\:}{5}}\qquad \:\\\\\end{gathered}

\begin{gathered}\qquad \dashrightarrow \sf Acceleration\:(a)\:=\:0.4 \:\qquad \:\\\\\end{gathered}

\begin{gathered}\qquad \therefore \pmb{\underline{\purple{\frak{ \:Acceleration\:(a)\:=\:0.4 \:m/s^2 }}} }\:\:\bigstar \\\end{gathered}

\begin{gathered}\therefore \:\underline { \sf Hence , \:\: The \:Acceleration \:of\:fish\:is \: \bf 0.4 \: m/s^2 \:}.\\\\\end{gathered}

Similar questions