Chemistry, asked by amritachaudhary11111, 4 months ago

A fixed mass of gas has a volume of 750cm3 at 23degree celsius and 800 mm pressure. Calculate the pressure for which its volume will be 720cm3, the temperature being -3degree celsius.

Answers

Answered by TheValkyrie
89

Question:

A fixed mass of gas has a volume of 750 cm³ at -23°C and 800 mm pressure. Calculate the pressure for which its volume will be 720 cm³, the temperature being -3° C.

Answer:

Final pressure of gas = 900 mm Hg

Explanation:

Given:

  • Initial Volume of gas (V₁) = 750 cm³
  • Initial Pressure of gas (P₁) = 800 mm Hg
  • Initial Temperature of gas (T₁) = -23° C
  • Final Volume of gas (V₂) = 720 cm³
  • Final Temperature of gas (T₂) = -3° C

To Find:

  • Final Pressure of gas (P₂)

Solution:

First convert all the given units to their standard units

Converting temperature from Celsius scale to Kelvin scale,

-23° C = 250.15 K

-3° C = 270.15 K

Now by the general gas equation we know that,

\tt \dfrac{P_1V_1}{T_1} =\dfrac{P_2V_2}{T_2}

Substituting the data we get,

\tt \dfrac{800\times 750}{250.15} =\dfrac{P_2\times 720}{270.15}

Simplifying,

\tt \dfrac{60000}{250.15} =\dfrac{P_2\times 72}{270.15}

239.856 = P₂ × 0.2665

P₂ = 239.856/0.2665

P₂ = 900 mm Hg

Hence the final pressure of the gas would be 900 mm Hg.


amritachaudhary11111: yes my fault the something was wrong in the question.
rathiramakanta: oke
rathiramakanta: Oke Thanks
Anonymous: Speechless answer
Aryan0123: Nice answer
angelgirlnew: not bad
pranati392: nice answer
madhavkaushik38: nice
Answered by DARLO20
134

\Large{\pink{\underline{\textsf{\textbf{Question\::}}}}} \\

A fixed mass of gas has a volume of 750 cm³ at -23°C and 800 mm pressure. Calculate the pressure for which its volume will be 720cm³, the temperature being -3°C.

 \\ \Large{\blue{\underline{\textsf{\textbf{Answer\::}}}}} \\

Gɪɴ ;-

Case - 1 ;-

  • Volume of a fixed mass of gas is 750 cm³ at -23°C.

\longmapsto\:\:\bf{V_1\:=\:750\:cm^3\:} \\

\longmapsto\:\:\bf{T_1\:=\:-23°C\:=\:-23\:+\:273\:=\:250\:K} \\

  • Pressure is 800 mm.

\longmapsto\:\:\bf{P_1\:=\:800\:mm\:} \\

CASE - 2 ;-

\longmapsto\:\:\bf{V_2\:=\:720\:cm^3\:} \\

\longmapsto\:\:\bf{T_2\:=\:-3°C\:=\:-3\:+\:273\:=\:270\:K} \\

T Fɪɴ ;-

  • The pressure (P) of the gas in case-2.

Cʟʟɪɴ ;-

\bf\blue{We\:know \:that,} \\

According to equation of gas in terms of pressure (P), absolute temperature (T) & volume (V) is

\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{\dfrac{P_1\:V_1}{T_1}\:=\:\dfrac{P_2\:V_2}{T_2}\:}}}}}} \\

:\implies\:\:\bf{\dfrac{800\times{750}}{250}\:=\:\dfrac{P_2\times{720}}{270}\:} \\ \\

:\implies\:\:\bf{\dfrac{600000}{25}\:=\:\dfrac{720\:P_2}{27}\:} \\ \\

:\implies\:\:\bf{24000\:=\:\dfrac{720\:P_2}{27}\:} \\ \\

:\implies\:\:\bf{720\:P_2\:=\:24000\times{27}\:} \\ \\

:\implies\:\:\bf{720\:P_2\:=\:648000\:} \\ \\

:\implies\:\:\bf{P_2\:=\:\dfrac{648000}{720}\:} \\ \\

:\implies\:\:\bf\purple{P_2\:=\:900\:mm} \\ \\

\Large\bf\orange{Therefore,} \\

The pressure of the gas in case-2 is 900 mm.


aarivukkarasu: it's right
Anonymous: colourful, Nice ✌
Aryan0123: Marvellous
angelgirlnew: marvelous and colorful answers ❤❤
Similar questions