Math, asked by russelpraveen6170, 6 months ago

A flag is posted on the top of a castle. A knight on the ground standing 30\,\text{m}30m30, start text, m, end text away from the castle notices that the angles of elevation of the top of the castle and the top of the flag are 30\degree30°30, degree and 45\degree45°45, degree respectively.
How long is the flag?

Answers

Answered by shrishti885
3

Answer:

hope you will like my answer

sry just for fun

Attachments:
Answered by deveshsharma1812
0

Answer:

Step-by-step explanation:

1 / 5

Strategy

Let's try to draw a rough diagram of the knight, the castle and the flag.

Here, \triangle ABD△ABDtriangle, A, B, D and \triangle ABC△ABCtriangle, A, B, C are right triangles.

We need to find the length of the flag, which is CDCDC, D or \purpleC{BD} - \maroonD{BC}BD−BCstart color #aa87ff, B, D, end color #aa87ff, minus, start color #ca337c, B, C, end color #ca337c.

Hint #22 / 5

Finding \maroonD{BC}BCstart color #ca337c, B, C, end color #ca337c

In \triangle BAC△BACtriangle, B, A, C, \tan(A)tan(A)tangent, left parenthesis, A, right parenthesis is the ratio of \maroonD{BC}BCstart color #ca337c, B, C, end color #ca337c and \blueD{AB}ABstart color #11accd, A, B, end color #11accd.

\begin{aligned} \tan(A)&= \dfrac{\maroonD{BC}}{\blueD{AB}}\\\\ \tan(30\degree) &= \dfrac{\maroonD{BC}}{\blueD{30}}\\\\ \dfrac{1}{\sqrt{3}} &= \dfrac{\maroonD{BC}}{30}\\\\ \maroonD{BC} &=\maroonD{10\sqrt{3}} \end{aligned}

tan(A)

tan(30°)

3

1

BC

 

=

AB

BC

=

30

BC

=

30

BC

=10

3

The castle is \maroonD{10\sqrt{3} \text{ m}}10

3

 mstart color #ca337c, 10, square root of, 3, end square root, start text, space, m, end text, end color #ca337c high.

Hint #33 / 5

Finding \purpleC{BD}BDstart color #aa87ff, B, D, end color #aa87ff

In \triangle BAD△BADtriangle, B, A, D, \tan(A)tan(A)tangent, left parenthesis, A, right parenthesis is the ratio of \purpleC{BD}BDstart color #aa87ff, B, D, end color #aa87ff and \blueD{AB}ABstart color #11accd, A, B, end color #11accd.

\begin{aligned} \tan(A)&= \dfrac{\purpleC{BD}}{\blueD{AB}}\\\\ \tan(45\degree) &= \dfrac{\purpleC{BD}}{\blueD{30}}\\\\ 1 &= \dfrac{\purpleC{BD}}{30}\\\\ \purpleC{BD}&=\purpleC{30} \end{aligned}

tan(A)

tan(45°)

1

BD

 

=

AB

BD

=

30

BD

=

30

BD

=30

Castle ++plus Flag is \purpleC{30 \text{ m}}30 mstart color #aa87ff, 30, start text, space, m, end text, end color #aa87ff high.

Hint #44 / 5

Length of flag

We can subtract \maroonD{BC}BCstart color #ca337c, B, C, end color #ca337c from \purpleC{BD}BDstart color #aa87ff, B, D, end color #aa87ff to get the length of the flag.

\begin{aligned} \text{flag} &= \purpleC{BD} - \maroonD{BC}\\\\ &= \purpleC{30} - \maroonD{10\sqrt{3}} \end{aligned}

flag

 

=BD−BC

=30−10

3

Hint #55 / 5

The length of the flag is (30 - 10\sqrt{3}) \text{ m}(30−10

3

) mleft parenthesis, 30, minus, 10, square root of, 3, end square root, right parenthesis, start text, space, m, end text.

Similar questions