Math, asked by sanvika9580, 7 months ago

A flag post 10m long is fixed on top of a tower .from a point on horizontal ground the angel of elevation of the top and bottom of the flag post are 40° and 30 ° respectively.calculate the height of the tower

Answers

Answered by Anonymous
8

Given :

  • Height of the flag post = 10 m.

  • Angle of Elevation = ∠1 = 40°

  • Angle of Elevation = ∠2 = 30°

To find :

The height of the tower.

Solution :

To find the Base of the figure :

According to the diagram , the length of DC = 10 m and the length of CB = x m.

Thus the length of DB is the sum of lengths of CB and DC .i.e,

⠀⠀⠀⠀⠀⠀⠀⠀⠀\boxed{\bf{DB = CB + DC}}

:\implies \bf{DB = x + 10} \\ \\ \\

\boxed{\therefore \bf{DB = (x + 10)\:m}} \\ \\

Hence the length of DB is (10 + x) m.

Hence by the above information , we can find the base of the figure in terms of variables.

We know that tan θ is P/B.

Where :

  • P = Height

  • B = Base

Let the base of the triangle be y m.

Using tan θ and substituting the values in it, we get :

:\implies \bf{tan\:\theta = \dfrac{P}{B}} \\ \\ \\

:\implies \bf{tan40^{\circ} = \dfrac{10 + x}{y}} \\ \\ \\

:\implies \bf{0.839 = \dfrac{10 + x}{y}} \quad (\because tan40^{\circ} = 0.8390) \\ \\ \\

:\implies \bf{0.839y = 10 + x} \\ \\ \\

:\implies \bf{y = \dfrac{10 + x}{0.839}} \\ \\ \\

\boxed{\therefore \bf{y = \dfrac{10 + x}{0.839}}} \\ \\

Hence the value of base of the figure is \bf{y = \dfrac{10 + x}{0.839}}

To find the height of the tower :

We know that tan θ is P/B.

Where :

  • P = Height

  • B = Base

Using tan θ and substituting the values in it, we get :

:\implies \bf{tan\:\theta = \dfrac{P}{B}} \\ \\ \\

:\implies \bf{tan30^{\circ} = \dfrac{x}{\dfrac{10 + x}{0.839}}} \\ \\ \\

:\implies \bf{tan30^{\circ} = \dfrac{x}{10 + x} \times 0.839} \\ \\ \\

:\implies \bf{tan30^{\circ} = \dfrac{0.839x}{10 + x}} \\ \\ \\

:\implies \bf{\dfrac{1}{\sqrt{3}} = \dfrac{0.839x}{10 + x}} \\ \\ \\

:\implies \bf{\dfrac{10 + x}{\sqrt{3}} = 0.839x} \\ \\ \\

:\implies \bf{\dfrac{10 + x}{1.732} = 0.839x} \\ \\ \\

:\implies \bf{10 + x = 0.839x \times 1.732} \\ \\ \\

:\implies \bf{10 + x = 1.5x} \\ \\ \\

:\implies \bf{10 = 1.5x - x} \\ \\ \\

:\implies \bf{10 = 0.5x} \\ \\ \\

:\implies \bf{\dfrac{10}{0.5} = x} \\ \\ \\

:\implies \bf{20 = x} \\ \\ \\

\boxed{\therefore \bf{x = 20\:m}} \\ \\ \\

Hence the height of the tower is 20 m.

Attachments:
Similar questions