A flagstaff stands on a vertical tower. At a distance 10m from the base of tower. Thetower and the flagstaff makes angles of 45degree and 15degree.find the length of the flagstaff.
Answers
Answered by
0
Let AD be the flagstaff and CD be the building.
Assume that the flagstaff and building subtend equal angles at point B.
Given that AD = 50 m, CD = h and BC = 200 m
Let ABD = θ, DBC = θ (∵ flagstaff and building subtend equal angles at a point on level ground).
Then, ABC = 2θ
From the right BCD,
tanθ=DCBC=h200⋯(eq:1)tanθ=DCBC=h200⋯(eq:1)
From the right BCA,
tan2θ=ACBC=AD + DC200=50 + h200tan2θ=ACBC=AD + DC200=50 + h200
⇒2tanθ1−tan2θ=50 + h200⇒2tanθ1−tan2θ=50 + h200 (∵tan(2θ)=2tanθ1−tan2θ)(∵tan(2θ)=2tanθ1−tan2θ)
⇒2(h200)1−h22002=50 + h200⇒2(h200)1−h22002=50 + h200(∵ substituted value of tan θ from eq:1)
⇒2h=(1−h22002)(50 + h)⇒2h=50+h−50h22002−h32002⇒2h=(1−h22002)(50 + h)⇒2h=50+h−50h22002−h32002
⇒2(2002)h⇒2(2002)h =50(200)2+h(200)2−50h2−h3=50(200)2+h(200)2−50h2−h3 (∵ multiplied LHS and RHS by 2002)
⇒h3+50h2+(200)2h−50(200)2=0
Assume that the flagstaff and building subtend equal angles at point B.
Given that AD = 50 m, CD = h and BC = 200 m
Let ABD = θ, DBC = θ (∵ flagstaff and building subtend equal angles at a point on level ground).
Then, ABC = 2θ
From the right BCD,
tanθ=DCBC=h200⋯(eq:1)tanθ=DCBC=h200⋯(eq:1)
From the right BCA,
tan2θ=ACBC=AD + DC200=50 + h200tan2θ=ACBC=AD + DC200=50 + h200
⇒2tanθ1−tan2θ=50 + h200⇒2tanθ1−tan2θ=50 + h200 (∵tan(2θ)=2tanθ1−tan2θ)(∵tan(2θ)=2tanθ1−tan2θ)
⇒2(h200)1−h22002=50 + h200⇒2(h200)1−h22002=50 + h200(∵ substituted value of tan θ from eq:1)
⇒2h=(1−h22002)(50 + h)⇒2h=50+h−50h22002−h32002⇒2h=(1−h22002)(50 + h)⇒2h=50+h−50h22002−h32002
⇒2(2002)h⇒2(2002)h =50(200)2+h(200)2−50h2−h3=50(200)2+h(200)2−50h2−h3 (∵ multiplied LHS and RHS by 2002)
⇒h3+50h2+(200)2h−50(200)2=0
Similar questions