a floor of length 7m and breadth 4m is to be covered by square tiles each of side 20 cm . how many tiles are needed to cover the floor? area of the floor ______ sq cm. area of one tile _______ sq cm. number of tiles=__________
Answers
Given that,
Length of floor = 7 m = 700 cm
Breadth of floor = 4 m = 400 cm
So,
Now, Side of square tile = 20 cm
Let assume that n square tiles of side 20 cm be required to cover the floor.
Thus,
So,
Additional information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given that,
Length of floor = 7 m = 700 cm
Breadth of floor = 4 m = 400 cm
So,
\begin{gathered}\rm \: Area_{(floor)} = Length \times Breadth \\ \end{gathered}
Area
(floor)
=Length×Breadth
\begin{gathered}\rm \: Area_{(floor)} = 700 \times 400 \\ \end{gathered}
Area
(floor)
=700×400
\begin{gathered}\rm\implies \:\boxed{ \rm{ \:Area_{(floor)} = 280000 \: {cm}^{2} \: }} \\ \end{gathered}
⟹
Area
(floor)
=280000cm
2
Now, Side of square tile = 20 cm
\begin{gathered}\rm \: Area_{(tile)} \: = \: {(side)}^{2} \\ \end{gathered}
Area
(tile)
=(side)
2
\begin{gathered}\rm \: Area_{(tile)} \: = \: {20}^{2} \\ \end{gathered}
Area
(tile)
=20
2
\begin{gathered}\rm\implies \:\boxed{ \rm{ \:Area_{(tile)} \: = \: 400 \: {cm}^{2} \: \: }} \\ \end{gathered}
⟹
Area
(tile)
=400cm
2
Let assume that n square tiles of side 20 cm be required to cover the floor.
Thus,
\begin{gathered}\rm \: n \times Area_{(tile)} = Area_{(floor)} \\ \end{gathered}
n×Area
(tile)
=Area
(floor)
\begin{gathered}\rm \: n \times 400 = 280000 \\ \end{gathered}
n×400=280000
\begin{gathered}\rm\implies \:\boxed{ \rm{ \: n\: = \: 700 \: \: }} \\ \end{gathered}
⟹
n=700
So,
\begin{gathered}\rm\implies \:\boxed{ \rm{ \: Number \: of \: tiles\: = \: 700 \: \: }} \\ \end{gathered}
⟹
Numberoftiles=700
\rule{190pt}{2pt}
Additional information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}
†
FormulasofAreas:−
⋆Square=(side)
2
⋆Rectangle=Length×Breadth
⋆Triangle=
2
1
×Base×Height
⋆Scalene△=
s(s−a)(s−b)(s−c)
⋆Rhombus=
2
1
×d
1
×d
2
⋆Rhombus=
2
1
d
4a
2
−d
2
⋆Parallelogram=Base×Height
⋆Trapezium=
2
1
(a+b)×Height
⋆EquilateralTriangle=
4
3
(side)
2