Math, asked by xanzana17zi1556, 7 months ago

a flower bed is in the shape of a rectangle with the semicircle if its longer side. if the dimensions of the rectangle is 126 m by 80 m . find its perimeter and area​

Answers

Answered by Anonymous
74

Given:

  • Length = 126m
  • Breadth = 80m

Find:

  • Area and the Perimeter of the flower bed.

Solution:

Here,

we, observe from the given fig. that

 \sf Diameter \: of \: semi - circle = 126m

 \sf So, \: radius \: of \: semi - circle =  \dfrac{d}{2}  =  \dfrac{126}{2}

 \sf radius \: of \: semi - circle =\dfrac{\cancel{126}}{\cancel{2}} = 63m

\underline{\boxed{\sf radius \: of \: semi - circle =63m}}

Now,

we, know that

\underline{\boxed{\sf perimeter \: of \: semi - circle =  \pi r}}

where,

  • π = \frac{22}{7}
  • r = 63m

So,

\sf\to perimeter \: of \: semi - circle =  \pi r

\sf\to perimeter \: of \: semi - circle =   \frac{22}{7}  \times 63

\sf\to perimeter \: of \: semi - circle =   \frac{22}{\cancel{7}}  \times\cancel{63}

 \underline{\boxed{\sf\to perimeter \: of \: semi - circle =  22 \times 9 = 198m}}

Now, perimeter of the flower bed

= Perimeter of semi-circle + Length + 2×(Breadth)

where,

  • Length = 126m
  • Breadth = 80m
  • Perimeter of semi-circle = 198m

So,

\sf  = 198 + 126 + (2 \times 80)

\sf  = 198 + 126 + 160

\sf  = 198 + 286 = 484m

\underline{\boxed{\sf Perimeter \:  of  \: the \:  flower  \: bed  = 484m}}

Now,

Area of the flower bed

= Area of the semi-circle + Area of the Rectangle

 \sf   = \dfrac{1}{2}  \times  \pi {r}^{2}  + (l \times b)

where,

  • Length = 126m
  • Breadth = 80m
  • π = \sf\dfrac{22}{7}
  • r = 63m

Now,

 \sf   = \dfrac{1}{2}  \times   \dfrac{22}{7}   \times {(63)}^{2}  + (126\times 80)

 \sf   =6237 + 10080

 \sf   =16317 {m}^{2}

\underline{\boxed{\sf area\:  of  \: the \:  flower  \: bed  = 16317 {m}^{2} }}

Hence, The Perimeter of the flower bed will be 484m

and the Area of the flower bed will be 16317m²

\setlength{\unitlength}{1mm}\begin{picture}(-2,0)\thicklines\put(0,0){\circle*{1}}\put(0,0){\line(3,0){1.5cm}}\put(15,0){\circle*{1}}\put(15,0){\line(0,3){1.5cm}}\put(15,15){\circle{1}}\put(15,15){\line(-3,0){1.5cm}}\put(0,0){\line(0,3){1.5cm}}\put(0,15){\circle{1}}\put(-4,15){A}\put(-4,-2){C}\put(16,-2){D}\put(16,15){B}\put(7.5,0){\circle* {1}}\put(-9,7.5){80cm}\put(3,17){126cm}\qbezier(0,0)(7,-13)(15,0)\end{picture}

Attachments:

Anonymous: Nice ^^"
Similar questions