Science, asked by sharmagurugovind64, 7 months ago

A fluid at a pressure of 3 bar and with specific volume of 0.18m3/kg contains in a cylinder behind a piston expand reversively to a pressure of 0.6 bar according to a law p=c/v2.where c is a constant calculate the work done by the fluid on the system.​

Answers

Answered by ApluvSingh
20

Explanation:

ans: 29840Nm/kg

this is from equation PV^2 =C

wd= integration of (pdv)

substitute p =c/v^2 and get the results

Attachments:
Answered by bhuvna789456
3

Given:

Pressure P_1=3bar=3\times10^5\;N/m^2

PressureP_2=0.6bar

Volume v_1=0.18m^{3/}kg

To find:

Work done

Step by step explanation:

       Work done ,

                                     W=\int_1^2\frac C{v^2}dv\\

                                      W=C\int_1^2\frac{dv}{v^2}

                                      W=C\left|\frac{v^{-2+1}}{-2+1}\right|_{v_1}^{v_2}

                                      W=C\left[-v^{-1}\right]_{v_1}^{v_2}

                                      W=C\left[-\frac1v\right]_{v_1}^{v_2}

                                      W=C\left[\frac1{v_1}-\frac1{v_2}\right]\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(1)

also,

                    C=Pv^2\\=P_1v_1^2\\=3\times0.18^2

                    =0.0972 bar(m^3/kg)^2

and,

              v_2=\sqrt{\frac C{P_2}}

                  =\sqrt{\frac{0.0972}{0.6}}

                  =0.402\;m^3/kg

Substituting the values of C, v_1 and v_2 value in equation (1), we get

work done,

             W=0.0972\times10^5\left[\frac1{0.18}-\frac1{0.402}\right]Nm/kg

            W=0.0972\times105\lbrack0.181 -0.4021\rbrack Nm/kg\;

            W=29840\;Nm/kg

Similar questions