Physics, asked by nithin9303, 10 months ago

A force 0.5N acts upon a body at rest and it moves a distance of 1m in 4s find the mass of the body

Answers

Answered by ShivamKashyap08
12

Answer:

  • Mass (M) of The Body is 4 Kg.

Given:

  1. Force Acting (F) = 0.5 N.
  2. Distance Covered (S) = 1 m.
  3. Time Taken (t) = 4 Sec.

Explanation:

\rule{300}{1.5}

From Second Kinematic Equation.

\bigstar \; {\large{\boxed{\tt S = ut = \dfrac{1}{2}at^2}}}

\bold{Here}\begin{cases}\text{S denotes Distance Travelled } \\ \text{u Denotes Initial Velocity} \\ \text{a Denotes acceleration} \\ \text{t Denotes Time taken}\end{cases}

Now,

{\large{\boxed{\tt S = ut = \dfrac{1}{2}at^2}}}

Substituting the values,

\longmapsto{\large{\tt 1 = 0 \times t + \dfrac{1}{2} \times a \times (4)^2}}

\longmapsto{\large{\tt 1 = 0 + \dfrac{1}{2} \times a \times 16}}

\longmapsto{\large{\tt 1 = \dfrac{1}{2} \times a \times 16}}

\longmapsto{\large{\tt a = 1 \times \dfrac{2}{16}}}

\longmapsto{\large{\tt a = 1 \times \cancel{\dfrac{2}{16}}}}

\longmapsto{\large{\tt a = 1 \times \dfrac{1}{8}}}

\longmapsto{\large{\underline{\boxed{\tt a =  \dfrac{1}{8} \; m/s^2}}}}

\rule{300}{1.5}

\rule{300}{1.5}

Applying Newton's Second law of motion.

\bigstar \; {\large{\boxed{\tt F = Ma}}}

\bold{Here}\begin{cases}\text{F Denotes Force Applied} \\ \text{M Denotes Mass} \\ \text{a Denotes acceleration}\end{cases}

Now,

{\large{\boxed{\tt F = Ma}}}

Substituting the values.

\longmapsto{\large{\tt 0.5 = M \times \dfrac{1}{8}}}

\longmapsto{\large{\tt M = 0.5 \times 8}}

\longmapsto{\large{\tt M = \dfrac{5 \times 8}{10}}}

\longmapsto{\large{\tt M = \dfrac{40}{10}}}

\longmapsto{\large{\tt M = \cancel{\dfrac{40}{10}}}}

\longmapsto{\large{\underline{\boxed{\red{\tt M = 4 \; Kg}}}}}

Mass (M) of The Body is 4 Kg.

\rule{300}{1.5}

Similar questions