`A force ¯ {F}=(4t+3t^{2}) N acts an an abjoct moving in xyplane. The magnitude of change in linear momentum of the object in time interval t=0 ta 1= 4 s is`
Answers
Answered by
28
Given
- F = 4t + 3t² N
- t = 0 to 4 = 4 sec
To Find
- Magnitude of change in momentum
Solution
☯ F = dp/dt
━━━━━━━━━━━━━━━━━━━━━━━━━
✭ According to the Question :
⇒ F = dp/dt
⇒ dp = F dt
⇒ ∫dp = ∫F dt
⇒ ∆P = ∫4t+3t²
⇒ ∆P = [4t²/2 + 3t³/3]
⇒ ∆P = 2t² + t³
⇒ ∆P = 2(4)² + (4)³
⇒ ∆P = 2×16 + 64
⇒ ∆P = 96 N s
∴ The change in momentum is equal to 96 N s
Answered by
0
❂ To calculate:
Mag of change in linear momentum from t = 0 to t = 4
❂ Solⁿ:
→ Given that, F = 3t² + 4t
Now, by Newton's 2nd law
F = dP / dt
⇒ dP = F dt
⇒ ∫dP = ∫F dt
⇒ ∫dP = ∫ (3t² + 4t) dt
⇒ ∫dP = ∫ 3t² dt + ∫ 4t dt
⇒ ∫dP = t³ + 2t²
→ Now, put limits
₀ˣ∫ dP = [ t³ + 2t² ]₀⁴
⇒ x - 0 = [ 4³ + 2(4)² ] - [ 0³ + 2(0)² ]
⇒ x = 64 + 32
⇒ x = 96 kgm/s
__________________________________
❂ Final Answer:
96 kgm/s
Similar questions
Computer Science,
19 hours ago
English,
19 hours ago
Math,
1 day ago
Math,
8 months ago
English,
8 months ago