Physics, asked by NirmitiJadhav, 2 months ago

A force f= 6t^2i +4tj is applied to a body of mass 4 kg at rest .what is the velocity of the body at end of 2s​

Answers

Answered by Anonymous
17

\maltese\:\underline{\underline{\sf AnsWer :}}\:\maltese

\footnotesize\bullet\:\sf \overrightarrow{F} = 6t^2 \hat{i} + 4t \hat{j}

\footnotesize\bullet\:\sf m= 4 \: kg

\footnotesize\bullet\:\sf \overrightarrow{u} = 0 \:  {ms}^{ - 1}

CALCULATION :

\longrightarrow\:\:\sf \overrightarrow{F} = m \overrightarrow{a} \\

\longrightarrow\:\:\sf\overrightarrow{a} =  \dfrac{\overrightarrow{F}}{m}

\longrightarrow\:\:\sf\overrightarrow{a} =  \dfrac{6t^2 \hat{i} + 4t \hat{j}}{4}

\longrightarrow\:\:\sf\overrightarrow{a} =  \dfrac{6t^2 \hat{i} }{4} +  \dfrac{ 4t \hat{j}}{4}  \\

\longrightarrow\:\:\sf\overrightarrow{a} =  \dfrac{3t^2 \hat{i} }{2} + t \hat{j} \\

\qquad \qquad \: \footnotesize\bullet\:\sf \overrightarrow{a}=\dfrac{\overrightarrow{dv}}{dt}

\longrightarrow\:\:\sf \dfrac{d\overrightarrow{v}}{dt}  =  \dfrac{3t^2 \hat{i} }{2} + t \hat{j} \\

\longrightarrow\:\:\sf d\overrightarrow{v}=  \bigg (\dfrac{3t^2 \hat{i} }{2} + t \hat{j}  \bigg)dt\\

Integrating both the sides we have :

\longrightarrow\:\:\displaystyle  \sf \int\limits_{\overrightarrow{u}}^{\overrightarrow{v}}d\overrightarrow{v}=  \int\limits_{t = 0}^{t = 2}\bigg (\dfrac{3t^2 \hat{i} }{2} + t \hat{j}  \bigg)dt\\

\longrightarrow\:\:\displaystyle  \sf \overrightarrow{v} - \overrightarrow{u}=   \dfrac{3}{2} \int\limits_{t = 0}^{t = 2}t^2 \hat{i}    \: dt+\int\limits_{t = 0}^{t = 2} t \hat{j}  \: dt\\

\longrightarrow\:\:\displaystyle  \sf \overrightarrow{v} - 0=   \dfrac{3}{2} \Bigg[ \frac{t^{3} }{3}  \Bigg]^2_0\hat{i}+\Bigg[ \dfrac{ {t}^{2} }{2}  \Bigg] ^2_0\hat{j}\\

\longrightarrow\:\:\displaystyle  \sf \overrightarrow{v} =   \dfrac{1}{2} \Bigg[ t^{3}  \Bigg]^2_0\hat{i}+\Bigg[ \dfrac{ {t}^{2} }{2}  \Bigg] ^2_0\hat{j}\\

\longrightarrow\:\:\displaystyle  \sf \overrightarrow{v} =   \dfrac{1}{2} \Bigg[ (2)^{3}  -  {(0)}^{3}  \Bigg]\hat{i}+\Bigg[ \dfrac{ {(2)}^{2} }{2}  -   \dfrac{ {0}^{2} }{2}  \Bigg] \hat{j}\\

\longrightarrow\:\:\displaystyle  \sf \overrightarrow{v} =   \dfrac{1}{2} \Bigg[ 8 \Bigg]\hat{i}+\Bigg[ \dfrac{ 4}{2}  \Bigg] \hat{j}\\

\longrightarrow\:\:\displaystyle  \sf \overrightarrow{v} =   \dfrac{8}{2} \hat{i}+ \dfrac{ 4}{2}   \hat{j}\\

\longrightarrow\: \:  \underline{ \underline{\displaystyle  \sf \overrightarrow{v} =  4 \hat{i}+ 2 \hat{j}}}\\


Anonymous: Awesome!!
Anonymous: Thanks :3
Similar questions