Physics, asked by SIDDHARTH7493, 10 months ago

A force F is applied on the wire of radius r and length L and change in the length of wire is l. If the same force F is applied on the wire of the same material and radius 2r and length 2L. Then the change in length of the other wire is

Answers

Answered by Anonymous
38

\huge\fcolorbox{red}{pink}{Answer}

Given:

  • For wire - 1

✏ Force applied = F

✏ Radius of cross section = r

✏ Length = L

✏ Elongation = l

  • For wire - 2

✏ Force applied = F

✏ Radius of cross section = 2r

✏ Length = 2L

To Find:

✏ Elongation in wire - 2

Concept:

✏ Here, both wires are made up from same material therefore young modulus of both wires will be same.

Formula:

✏ Young modulus of material is given by

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \dag \:  \underline{ \boxed{ \rm{ \pink{ \bold{Y =  \frac{F \times L}{A \times  \triangle{L}}}}}}}  \:  \dag

Terms:

✏ F denotes applied force

✏ A denotes area of cross section

✏ L denotes length

✏ ΔL denotes elongation

Calculation:

 \implies \rm \: Y_1 = Y_2 \\  \\  \therefore \rm \:  \frac{F_1 \times L_1}{A_1 \times  \triangle{L_1}}  =  \frac{F_2 \times L_2}{A_2 \times  \triangle{L_2}}  \\  \\  \therefore \rm \:   \frac{F \times L}{\pi {r}^{2}  \times l}  =  \frac{F \times 2L}{\pi( {2r)}^{2}  \times  \triangle{L_2}}  \\  \\  \therefore \rm \: l =   \frac{4 \triangle{L_2}}{2}  \\  \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \huge{ \orange{ \triangle{L_2} =  \frac{l}{2} }}}}}} \:  \purple{ \clubsuit}

Answered by Anonymous
30

Solution

To finD

Extension in the new wire

We know that,

\sf Stress \propto Strain \\ \\ \dashrightarrow \sf Y = \dfrac{Stress}{Strain} \\ \\ \dashrightarrow \boxed{\boxed{\sf Y = \dfrac{F \times L}{A \times e}}}

Case I

  • Length of the Wire (L)

  • Radius of the wire (r)

  • Extension in the wire (l)

Putting the values,we get :

\sf Y = \dfrac{F \times L}{\pi r^2 \times l}-----------(1)

Case II

  • Length of the Wire (2L)

  • Radius of the Wire (2r)

  • Extension in the wire = ?

Let the extension in the wire be e

Putting the values,we get :

\sf Y = \dfrac{F \times 2L }{\pi (2r)^2 \times e} \\ \\ \longrightarrow \ \sf Y = \dfrac{1}{2} \times\dfrac{F \times e}{\pi r^2 \times L}-----------(2)

Here,

  • Same force is applied on the two wires

  • The wires are of same material,their Young's Modulus is equal

From relations (1) and (2),we can write :

\dashrightarrow \sf l = \dfrac{1}{2} \times e \\ \\ \large{ \dashrightarrow \ \boxed{\boxed{\sf l : e = 2 : 1}}}

Thus,the extension in the new wire in 1/2 of the extension in the first wire

Similar questions