Physics, asked by neha12363, 1 year ago


A force F(x) = (2+x )N acts on a small body of mass 2Kg and displaces it from
x=0 to x = 5m. Calculate the amount of work done.​

Answers

Answered by BrainlyConqueror0901
179

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore w_{f}=22.5\:J}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline {\underline \bold{Given : }} \\  \implies  \text{f = (2 + x)N} \\  \\  \implies  \text{Mass = 2 kg} \\  \\ \underline {\underline \bold{To \: Find : }} \\  \implies \text{Work \: done = ?}

• According to given question :

  \bold{For \: finding \: work \: done : } \\  \implies f =(2 + x) \\  \\   \implies   \frac{dw}{dx}  =  (2 + x)  \\ \\  \implies dw = (2 + x)dx  \\  \\  \text{Integrating \: both \: side  \: w.r.t \: x}  \\  \implies  \int   dw =  \int(2 + x)dx \\  \\  \text{Putting \: given \: limit} \\  \implies  \int_{0}^{w} dw = \int_{0}^{5}(2 + x)dx \\  \\  \implies  (w)_{0}^{w}   = \int_{0}^{5}(2x +  \frac{ {x}^{2} }{2} )dx \\  \\  \implies  w_{f}  =   \lim{( 2x +   \frac{ {x}^{2} }{2} )}_{0}^{5}  \\   \\  \implies w_{f}  = 2 \times 5 +  \frac{ {5}^{2} }{2}  \\  \\  \implies  w_{f} = 10 +12.5 \\  \\   \bold{\implies  w_{f} = 22.5 \: J}


Arcel: Great ! : )
BrainlyConqueror0901: thnx : )
Anonymous: Awsome Answer !
BrainlyConqueror0901: : )
Answered by jatindevrajput
18

=)2x+(x^{2})/2

=)2 × 5 + (5 × 5)/2

=)10+12.5

=)22.5

Similar questions