Physics, asked by morankhiraj, 4 months ago

①• A force is applied on a body of mass 20 kg moving with a velocity of 40 m/s. The body attains a velocity of
50 m/s in 2 s. Calculate the work done on the body.


②• A girl of mass 35 kg climbs up from the first floor of a building at a height 4 m above the ground to the third floor at a height 12 m above the ground. What will be the increase in her gravitational potential energy? (Take g = 10 m/s²)

Answers

Answered by mathdude500
5

\large\underline\blue{\bold{Given \:  Question :-1  }}

A force is applied on a body of mass 20 kg moving with a velocity of 40 m/s. The body attains a velocity of

50 m/s in 2 s. Calculate the work done on the body.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Given  - \begin{cases} &\sf{initial \: velocity, \: u \:  = 40 \: m \: per \: sec.} \\ &\sf{mass, \: m = 20 \: kg}\\ &\sf{time \: taken, \: t \:  = 2 \: sec.}\\ &\sf{final \: velocity, \: v \:  = 50 \: m \: per \: sec.} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf To \:  find :- \begin{cases} &\sf{work \: done} \\ \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf Formula \:  used:- \begin{cases} &\sf{v = u + at} \\ &\sf{Force = m × a}\\ &\sf{ {v}^{2}  -  {u}^{2}  = 2as}\\ &\sf{Work  \: done = Force × Displacement} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 1 }}

❥︎We know,

\sf \:  ⟼v = u + at

\sf \:  ⟼v - u = at

\bf\implies \:a \:  = \dfrac{v - u}{t} \sf \:  ⟼(1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 2 }}

\sf \:  ⟼Force = m \:  ×  \: a

On substituting the value from equation (1), we get

\sf \:  ⟼Force = m  \: ×  \: \dfrac{v - u}{t} \sf \:  ⟼(2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 3 }}

\sf \:  ⟼ {v}^{2}  -  {u}^{2}  = 2as

\sf \:  ⟼s = \dfrac{ {v}^{2} -  {u}^{2}  }{2a}

On substituting the value of 'a' from equation (1), we get

\sf \:  ⟼s = \dfrac{ {v}^{2} -  {u}^{2}  }{2 \times \dfrac{v - u}{t} }

\sf \:  ⟼s = \dfrac{( \cancel{v - u)}(v + u)}{2 \times (\cancel{v - u)}}  \times t

\sf \:  ⟼s =  \dfrac{t}{2}  \times (v - u)\sf \:  ⟼(3)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 4 }}

\sf \:  ⟼Work  \: done  \: =  \: Force \:  × \:  Displacement

\sf \:  ⟼Work  \: done  \: =  m \times \dfrac{v - u}{t}  \times \dfrac{t \times (v + u)}{2}

\sf \:  ⟼Work  \: done  \: =  \dfrac{m}{2} ( {v}^{2}  -  {u}^{2}  \: )

\sf \:  ⟼Work  \: done  \: =  \dfrac{20}{2} ( {(50)}^{2}  -  {(40)}^{2}  \: )

\sf \:  ⟼Work  \: done  \: =  10 \times 900 = 9000

\bf\implies \:  ⟼Work  \: done  \: =  9000 \: joules.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Given \:  Question :-2  }}

A girl of mass 35 kg climbs up from the first floor of a building at a height 4 m above the ground to the third floor at a height 12 m above the ground. What will be the increase in her gravitational potential energy? (Take g = 10 m/s²)

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf given \:  -  \begin{cases} &\sf{mass \: of \: girl, \: m = 20 \: kg} \\ &\sf{height \: of \: first \: floor \: from \: ground \:  = 4 \: m}\\ &\sf{height \: of \: third \: floor \: from \: ground \:  = 12 \: m} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf To \:  find :- \begin{cases} &\sf{incrase \: in \: gravitational \: potential \: energy}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\sf \: Gravitational \:  potential \:  energy \:  at  \: first  \: floor = mgh_1

\sf \:   = 35 \times 10 \times 4

\sf \:   = 1400 \: joules

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:Gravitational \:  potential  \: energy \:  at  \:  {3}^{rd}  \: floor = mgh_2

\sf \:   = 35 \times 10 \times 12 = 4200 \: joules

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:So,  \: change \:  in gravitational \:  potential  \: energy

\bf \:  ⟼ 4200 - 140 = 2800 \: joules.

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions