Physics, asked by masaudsulxx, 4 months ago

A force of 10N is making an angle of 30degree with horizontal .its horizontal component will be
1 point

Answers

Answered by Anonymous
4

 \sf \red{horizontal  \: component \: is \:  the  \: force} \\ \sf \red{ \:  that \:  is  \: applied \:  as  \: a  \: result } \\ \sf \red{\:  of \:  the  \: diagonal  \: application \:  of  \: force.}

 \sf{here \:  in \:  this  \: case,} \\  \sf{given  \: diagonal  \: force =10N.} \\ \sf{angle= 30°}  \\ \sf{ horizontal \:  component  \: is } \\  \sf{found using trigonometry..}

 \sf{ѕo,} \\  \sf{A \:  vector  \: of  \: magnitude \:  10 N \:  is \:  provided.} \\  \sf{It \:  is \:  at  \: an  \: angle \:  of  \: 30°  \: to \:  the \:  + \:  x axis.}

 \sf{To \:  find:} \\ \sf{The  \: components } \\  \sf{along \:  the  \: x  \: and  \: y \:  axis.} \\  \sf{Calculation:} \\ \sf{Along \:  x \:  axis:}

 \sf \pink{F(x) = F cos(θ)} \\ \sf \pink{:⇒F(x) = 10 × cos(30)} \\ \sf \pink{:⇒F(x) = 10 (√3/2) = 5√3N}

 \tt{Along \:   \:  \: y  \:  \: \:  axis:}

 \sf \purple{F(y) = F sin(θ)} \\  \sf \purple{:⇒ F(y) = 10 sin(30°)} \\  \sf \purple{:⇒ F(y) = 10 × ½} \\  \sf \purple{ :⇒F(y) = 5 N.}

 \sf \orange{Additional  \: information:} \\  \sf{1. A  \: vector  \: is \:  a \:  quantity \:  that } \\  \sf{\: can  \: be \:  defined  \: with  \: both} \\  \sf{  \: magnitude  \: and \:  direction.} \\  \\  \sf{2. Since  \: force  \: is  \: a \:  vector,}  \\  \sf{ \: we  \: are  \: able \:  to \: break \:  it \:  down }\\  \sf{ \:  into \:  components \:  along \:  chosen  \: axis.}

Answered by Anonymous
7

\huge\tt\colorbox{pink}{Qᴜᴇsᴛɪᴏɴ}

❥ horizontal components the force

that is applied as a result

of the diagonal application of force.

\begin{gathered} \sf{here \: in \: this \: case,} \\ \sf{given \: diagonal \: force =10N.} \\ \sf{angle= 30°} \\ \sf{ horizontal \: component \: is } \\ \sf{found using trigonometry..}\end{gathered}

\begin{gathered} \sf{ѕo,} \\ \sf{A \: vector \: of \: magnitude \: 10 N \: is \: provided.} \\ \sf{It \: is \: at \: an \: angle \: of \: 30° \: to \: the \: + \: x axis.}\end{gathered}

\begin{gathered} \sf{To \: find:} \\ \sf{The \: components } \\ \sf{along \: the \: x \: and \: y \: axis.} \\ \sf{Calculation:} \\ \sf{Along \: x \: axis:}\end{gathered}

\begin{gathered} \sf \pink{F(x) = F cos(θ)} \\ \sf \pink{:⇒F(x) = 10 × cos(30)} \\ \sf \pink{:⇒F(x) = 10 (√3/2) = 5√3N}\end{gathered}

\tt{Along \: \: \: y \: \: \: axis:}

\begin{gathered} \sf \purple{F(y) = F sin(θ)} \\ \sf \purple{:⇒ F(y) = 10 sin(30°)} \\ \sf \purple{:⇒ F(y) = 10 × ½} \\ \sf \purple{ :⇒F(y) = 5 N.} \end{gathered}

\begin{gathered} \sf \orange{Additional \: information:} \\ \sf{1. A \: vector \: is \: a \: quantity \: that } \\ \sf{\: can \: be \: defined \: with \: both} \\ \sf{ \: magnitude \: and \: direction.} \\ \\ \sf{2. Since \: force \: is \: a \: vector,} \\ \sf{ \: we \: are \: able \: to \: break \: it \: down }\\ \sf{ \: into \: components \: along \: chosen \: axis.}\end{gathered}

Similar questions