Physics, asked by tejalsavjani, 9 months ago

A force of 200N pulls a box of 10kg to the right. The coefficient of kinetic friction is 0.1 What is the horizontal acceleration of the box?
If a vertical force of 50N acts on the box vertically downwards, then what will be the acceleration of the box?(take g=10m/s2).

plz answer

Answers

Answered by BrainlyConqueror0901
14

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Horizontal\:acceleration=19\:m/s^{2}}}}

\green{\tt{\therefore{Horizontal\:acceleration=13.5\:m/s^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Force(F_{1})= 200 \: N \\ \\  \tt:  \implies Force(F_{2})=50 \: N \\\\ \tt:  \implies Coefficient \: of \: kinetic \: friction( \mu) = 0.1 \\  \\  \tt:  \implies Mass \: of \: box(m) = 10 \: kg \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Horizontal \: acceleration( a_{1}) =?  \\  \\ \tt:  \implies Horizontal \: acceleration( a_{2} ) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  F_{1}  -  \mu N = ma \\\\ \tt\circ\:N=mg=100\:N \\\\ \tt:  \implies 200 - 0.1 \times 10 \times 10 = 10 \times a \\  \\ \tt:  \implies 200 - 10 = 10 \times a \\  \\ \tt:  \implies 190 = 10 \times a \\  \\ \tt:  \implies a =  \frac{190}{10}  \\  \\  \green{\tt:  \implies a = 19 \:  {m/s}^{2} } \\  \\   \green{\tt \therefore Horizontal \: acceleration \: of \: box \: is \: 19 \:  {m/s}^{2} } \\  \\  \bold{For \: Vertical \: Force:} \\ \\ \tt \circ \:  F_{1}  = 200 \: N \\  \\  \tt \circ \:  F_{2} = 50 \: N \\ \\   \tt:  \implies  F_{1} -  F_{2} -  \mu N= ma \\ \\ \tt\circ\:N=50+mg=150\:N\\ \\ \tt:  \implies 200 - 50 - 0.1 \times 150 = 10 \times a \\  \\ \tt:  \implies 135 = 10 \times a \\  \\ \tt:  \implies a =  \frac{135}{10}  \\  \\  \green{\tt:  \implies a = 13.5\:  {m/s}^{2} } \\   \\   \green{\tt \therefore Acceleration \: of \: box  \: is \: 13.5{ \: m/s}^{2} }

Answered by Anonymous
53

\red{\underline{\underline{\bold{Answer}}}}

\green{\tt{\therefore{Acceleration=19\:m/s^{2}}}}

\green{\tt{\therefore{Acceleration=13.5\:m/s^{2}}}}

\blue{\bold{Given}}

Force = 200 N

Vertical Force = 50 N

Coefficient friction = 0.1

Mass of box = 40 KG

\orange{\bold{To\:Find}}

Acceleration = M?

  • ATO

 \bold{\purple{By\:Newton's\:law}} \\  \tt{\orange{\implies  F_{1}  -  \mu N = ma} }\\\\  \tt {\green{\implies 200 - 0.1 \times 10 \times 10 = 10 \times a} }\\  \\ \tt {\pink {\implies 200 - 10 = 10 \times a}} \\  \\ \tt{\orange{\implies 190 = 10 \times a}} \\  \\ \tt {\red{\implies a =  \frac{190}{10} }} \\  \\  \tt{\purple{\implies a = 19 \:  {m/s}^{2} }}  \\  \\  \bold{\pink{Again:}} \\ \\   \tt{\green{\implies  F_{1} -  F_{2} -  \mu N= ma}} \\ \\ \tt{\red{\implies 200 - 50 - 0.1 \times 150 = 10 \times a}} \\  \\ \tt{\orange{\implies 135  = 10 \times a}} \\  \\ \tt{\pink{\implies a =  \frac{135}{10}}}  \\  \\  \tt {\purple{\implies a = 13.5\:  {m/s}^{2}} }

Similar questions