Physics, asked by bhabyasingh72071, 11 months ago

A force of 4 n acts on a body of mass 40 kg initially at rest for a distance of 2m. The k.E. Acquired by the body is

Answers

Answered by Anonymous
56

\Huge{\boxed{\boxed{\mathsf{\purple{ANSWER \colon }}}}}

From the Question,

  • Force acting on the Body,F = 4 N

  • Mass of the Body,m = 40 Kg

  • Distance Covered,s = 2 m

To find

Kinetic Energy

Since,

The object is at rest,it's initial velocity is zero » u = 0 m/s

Work Done by the Force on body

 \huge{ \boxed{ \boxed{ \sf{ \green{W = fs}}}}}

Putting the values,

 \large{ \leadsto \:  \sf{W = (4)(2)}} \\  \\  \huge{ \leadsto \:  \underline{ \boxed{ \rm{W = 8 \: J}}}}

Also,

 \huge{ \boxed{ \boxed{ \sf{</p><p>f = ma}}}} \\  \\  \large{ \implies \:  \sf{a =  \frac{f}{m} }} \\  \\  \large{ \implies \:  \sf{a =  \frac{4}{40} }} \\  \\  \large{ \implies \:  \boxed{ \boxed{ \sf{a = \frac{1}{10} \: m {s}^{ - 2} }}}}

Work Energy Theorem

The work done by all the forces acting on the body is equal to change in kinetic energy of the body

 \huge{ \boxed{ \boxed{ \tt{ \green{W =  {K}_{f}  -  {K}_{i} }}}}}

Kinetic Energy is the half product of mass of the object and square of the velocity of the object.Initial Kinetic Energy would be zero,given : initial velocity is zero.

 \large{ \longrightarrow \: \sf{W =  {K}_{f} - 0 }} \\  \\  \huge{ \longrightarrow \:   \boxed{ \boxed{\sf{ {K}_{f}  = 8 \: J}}}}

Hence,the Kinetic Energy of the body is 8 J

#BAL

#AnswerWithQuality

Answered by ShivamKashyap08
56

Answer:

  • Kinetic Energy (K.E) = 8 Joules.

Given:

  1. Force Acting (F) = 4 N.
  2. Mass of the Body (M) = 40 Kg.
  3. Distance Travelled = 2 meters.

Explanation:

\rule{300}{1.5}

From Newtons Second Law of Motion.

\large{\boxed{\bold{F = Ma}}}

Substituting The Values.

\large{\tt \hookrightarrow 4 = 40 \times a}

\large{\tt \hookrightarrow a = \dfrac{4}{40}}

\large{\tt \hookrightarrow a = \dfrac{\cancel{4}}{\cancel{40}}}

\large{\hookrightarrow{\underline{\underline{\tt a = \dfrac{1}{10}}}}}

\rule{300}{1.5}

\rule{300}{1.5}

Applying Kinematic equation.

\large{\boxed{\bold{v^2 - u^2 = 2as}}}

Substituting the values.

\large{\tt \hookrightarrow v^2 - (0)^2 = 2 \times \dfrac{1}{10} \times 2}

  • Initial Velocity (u) = 0 m/s.
  • Distance = 2 m.
  • Acceleration = 1/10 m/sec².

Simplifying.

\large{\tt \hookrightarrow v^2 - 0 = 4 \times \dfrac{1}{10}}

\large{\tt \hookrightarrow v^2  = \dfrac{4}{10}}

\large{\boxed{\tt v^2 = \dfrac{4}{10}}}

\rule{300}{1.5}

\rule{300}{1.5}

From Kinetic Energy.

\large{\boxed{\bold{K.E = \dfrac{1}{2}Mv^2}}}

Substituting the values.

\large{\tt \hookrightarrow K.E = \dfrac{1}{2} \times 40 \times\dfrac{4}{10}}

\large{\tt \hookrightarrow K.E = \dfrac{1}{2} \times \cancel{40} \times\dfrac{4}{\cancel{10}}}

\large{\tt \hookrightarrow K.E = \dfrac{1}{2} \times 4 \times 4}

\large{\tt \hookrightarrow K.E = \dfrac{1}{\cancel{2}} \times \cancel{4} \times 4}

\large{\tt \hookrightarrow K.E = 1 \times 2 \times 4}

\large{\tt \hookrightarrow K.E = 1 \times 8}

\huge{\boxed{\boxed{\tt K.E = 8 \; J}}}

Kinetic Energy is 8 Joules.

\rule{300}{1.5}

Similar questions