Physics, asked by anvisarraf, 9 months ago

A force of 5 N changes the velocity of a body from 36 km/h to 72 km/h in 5 s. How much force is needed to produce the same change in 2 s ? 1.25 N 12.5 N 125 N 0.125 N

Answers

Answered by OnTheWay12
2

Force needed to change body momentum = 5 N

Change in velocity (δ P) v2 - v1 = 36 km/ h or 10 m/s

Time taken = 5 sec

F = δ P / t

5 = m δv / t

5 = m × 10 / 5

m = 2.5

Hence force needed to produce same change in 2 sec

F = 2.5 × 10 / 2

F = 12.5 N

Answered by XEVILX
1

Hey Pretty Stranger!

• Initial Velocity (u) = 36 km/hr = 36 × \sf\dfrac{5}{18} = 10 m/s

• Final Velocity (v) = 72 km/hr = 72 × \sf\dfrac{5}{18} = 20 m/s

• Time (t) = 5 seconds

• Force (F) = 5 Newtons

We hafta find acceleration first

 \bigstar \:  {  \boxed{ \sf \:  Acceleration =  \frac{Final \:  Velocity - Initial  \: Velocity}{Time  \: taken}  }}

 \longrightarrow \sf \:  \dfrac{20 - 10}{5}

 \longrightarrow \sf \:  \dfrac{10}{5}  = 2 \: m {s}^{ - 2}

From Newton's 2nd Law of motion :

 \bigstar \:  {  \boxed{ \sf \:  Force  = Mass  \times Acceleration   }}

 \longrightarrow \sf \: 5 =  Mass \times  2

 \longrightarrow \sf \:Mass  = 2.5 \: kg

Now, To bring the same change in 2 seconds :

 \bigstar \:  {  \boxed{ \sf \:  Acceleration =  \frac{Final \:  Velocity - Initial  \: Velocity}{Time  \: taken}  }}

 \longrightarrow \sf \:  \dfrac{20 - 10}{2}

 \longrightarrow \sf \:  \dfrac{10}{2}  = 5m {s}^{ - 2}

And now,

 \bigstar \:  {  \boxed{ \sf \:  Force  = Mass  \times Acceleration   }}

 \longrightarrow \sf \: F = 2.5 \times 5

 \longrightarrow  \sf \: F =12. 5 \: N

\therefore 12.5 N of force is needed to produce the same change in 2 s.

Similar questions