Physics, asked by PhantomKris, 10 months ago

A force of 50 kgf is applied to the smaller piston of a
hydraulic machine. Neglecting friction, find the force
exerted on the large piston, if the diameters of the
pistons are 5 cm and 25 cm respectively.
Ans. 1250 kgf

please explain the question nicely​

Answers

Answered by Anonymous
12

\text{We know that pressure on both the}

\text{pistol should be same}

\therefore Pressure\:on\:smaller\:piston =  Pressure\:on\:larger\:piston

\dfrac{force\:on\:smaller\:piston}{Area\:of\: smaller\:piston} = \dfrac{force\:on\: larger\:piston}{Area\:of\:larger\:piston}

\therefore force\:on\: larger\:piston =

\dfrac{force\:on\:smaller\:piston}{Area\:of\: smaller\:piston} × Area\:of\:larger\:piston

\Rightarrow \dfrac{50}{2.5 × 2.5 × 3.14} × 12.5 × 12.5 × 3.14 = 1250kgf

Answered by Anonymous
2

Ratio of diameter of smaller piston to bigger piston = 5:25

.•. Ratio of area of smaller piston to bigger piston = 25:625

Force applied on smaller piston, F1 = 50kgf

Let F2 be the force on the bigger piston.

By the principle of hydraulic machine,

Pressure on narrow piston = Pressure on wider piston

 \frac{F1}{A1}  =  \frac{F2}{A2}  \\  \\  \implies \:   \frac{F1}{F2}  =  \frac{A1}{A2}  \\  \\  \implies \:  \frac{50}{F2}  =  \frac{25}{625}  \\  \\  \implies \: F2 \:  =  \:  \cancel{50}  \:  \: ²\times  \frac{625}{ \cancel{25} } \\  \\  \ = 1250 \: kgf \:  \:  \:  \:  \: (ans)

Similar questions