Math, asked by Carter23, 5 months ago

A fraction becomes 1/3 when 2 is subtracted from numerator and it becomes 1/2 when 1 is subtracted from denominator. Find the fraction.

Answers

Answered by IdyllicAurora
51

Answer :-

 \: \large{\underline{\underline{\sf{Firstly,\; let's \; understand\; the \; Concept \; Used \; :-}}}}

Here the concept of Linear Equations in Two Variables has been used. According to this, we will take the numerator and denominator as variables and find them using constants.

Let's do !!

_________________________________________________

Question :-

A fraction becomes 1/3 when 2 is subtracted from numerator and it becomes 1/2 when 1 is subtracted from denominator. Find the fraction.

_________________________________________________

Solution :-

Given,

» The fraction is = Numerator - 2

» The fraction is ½ = Denominator - 1

Let the numerator of the fraction be 'x'

Let the denominator of the fraction be 'y'

Then using variables,

 \: \displaystyle{\sf{The \; Fraction \; is \; = \;  \bf{\dfrac{x}{y}}}}

_________________________________________________

~ For the value of x and y :-

=> Case I :-

 \: \qquad \large{\sf{:\Longrightarrow \;\;\;\dfrac{\: (x \; - \; 2)}{\: y} \; \; = \; \; \bf{\dfrac{1}{3}}}}

By cross multiplication, we get,

3(x - 2) = y

✒ y = 3x - 6 ... (i)

_________________________________________________

=> Case II :-

 \: \qquad \large{\sf{:\Longrightarrow \;\;\;\dfrac{\: x}{\: (y\;-\;1)} \; \; = \; \; \bf{\dfrac{1}{2}}}}

By cross multiplication, we get,

2x = y - 1

y = 2x + 1 ... (ii)

_________________________________________________

From equation (i) and (ii), we get,

✒ 3x - 6 = 2x + 1

✒ 3x - 2x = 1 + 6

x = 7

 \: \large{\boxed{\boxed{\tt{Hence,\;\:value\;\:of\:\;numerator,\:\; x \:\; = \:\; \bf{7}}}}}

By using equation (ii) and value of x, we get

✒ y = 2x + 1

✒ y = 2(7) + 1 = 14 + 1

✒ y = 15

 \: \large{\boxed{\boxed{\tt{Hence,\;\:value\;\:of\:\;denominator,\:\; y \:\; = \:\; \bf{15}}}}}

 \; \qquad \large{\sf{:\Longrightarrow\;\;\; Thus, \; the \; fraction \; is \; \dfrac{7}{15}}}

 \: \large{\underline{\underline{\rm{Thus,\; the\; fraction\; is \; \boxed{\bf{\dfrac{7}{15}}}}}}}

_________________________________________________

 \: \large{\underline{\sf{Confused?,\; Don't\; Worry \; Let's \; Start\; It}}}

For verification, we need to simply apply the values we got into the equation we formed. Then,

~ Case I :-

 \: \sf{:\longrightarrow \;\;\dfrac{\: (x \; - \; 2)}{\: y} \; \; = \; \; \bf{\dfrac{1}{3}}}

 \: \sf{:\longrightarrow \;\;\dfrac{\: (7 \; - \; 2)}{\: 15} \; \; = \; \; \bf{\dfrac{1}{3}}}

 \: \sf{:\longrightarrow \;\;\dfrac{\: \cancel{5}}{\: \cancel{15}} \; \; = \; \; \bf{\dfrac{1}{3}}}

 \: \sf{:\longrightarrow \;\;\dfrac{\: 1}{\: 3} \; \; = \; \; \bf{\dfrac{1}{3}}}

Clearly, LHS = RHS.

~ Case II :-

 \: \sf{:\longrightarrow \;\;\;\dfrac{\: x}{\: (y\;-\;1)} \; \; = \; \; \bf{\dfrac{1}{2}}}

 \: \sf{:\longrightarrow \;\;\;\dfrac{\: 7}{\: (15\;-\;1)} \; \; = \; \; \bf{\dfrac{1}{2}}}

 \: \sf{:\longrightarrow \;\;\;\dfrac{\: \cancel{7}}{\: \cancel{14}} \; \; = \; \; \bf{\dfrac{1}{2}}}

 \: \sf{:\longrightarrow \;\;\;\dfrac{\: 1}{\: 2} \; \; = \; \; \bf{\dfrac{1}{2}}}

Clearly, LHS = RHS

Here both the conditions satisfy, so our answer is correct.

Hence, Verified.

_________________________________________________

More to know :-

Polynomials are the mathematical expressions that are formed using constant and variable terms but variable terms can be of many degrees.

They are :-

  • Linear Polynomial
  • Quadratic Polynomial
  • Cubic Polynomial
  • Bi - Quadratic Polynomial

Linear Equations are the equations formed using constant and variable terms but the variable terms are of single degrees.

They are :-

  • Linear Equation in One Variable
  • Linear Equation in Two Variable
  • Linear Equation in Three Variable
Answered by Anonymous
29

Given:-

  • Fraction is \sf{\dfrac{1}{3}} = -2

  • Fraction is \sf{\dfrac{1}{2}} = -1

Solution:-

\tt\longmapsto{\dfrac{x - 2}{y} =\dfrac{1}{3}}

\tt\longmapsto{3(x - 2) = y}

\tt\longmapsto{3x - 6 = y}

\tt\longmapsto{3x - y = 6}⠀⠀.........(i)

\tt\longmapsto{\dfrac{x}{y - 1} =\dfrac{1}{2}}

\tt\longmapsto{2x = y - 1}

\tt\longmapsto{2x - y = -1}⠀⠀.........(ii)

From (i) and (ii)

\tt\longmapsto{3x - y = 6}

\tt\longmapsto{2x - y = -1}

\tt\longmapsto{x = 7}

Putting the value of x in the eq. (i)

\tt\longmapsto{3x - y = 6}

\tt\longmapsto{3(7) - y = 6}

\tt\longmapsto{21 - y = 6}

\tt\longmapsto{-y = 6 -21}

\tt\longmapsto{-y = -15}

\tt\longmapsto{y = 15}

∴ Fraction = \tt\longmapsto{\dfrac{7}{15}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions