Math, asked by gauhar8066, 11 months ago

A fraction becomes 2/5 when 2 is substracted from numerater and becomes 4/7 when 2 is added to denominator . Find the fraction

Answers

Answered by Anonymous
57

Given :

  • A fraction when 2 is subtracted from the numerator becomes 2/5.
  • When 2 is added to the denominator, the fraction becomes 4/7.

To Find :

  • The fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction = \bold{\dfrac{x}{y}}

Case 1 :

When the numerator is decreased by 2, the fraction is 2/5.

Numerator = (x-2)

Denominator = y

Equation :

\implies \sf{\dfrac{x-2}{y}=\dfrac{2}{5}}

\implies \sf{5(x-2) =2y}

\implies \sf{5x-10=2y}

\implies \sf{5x-2y=10}

\implies \sf{5x=10+2y}

\implies \sf{x=\dfrac{10+2y}{5}\:\:\:\:(1)}

Case 2 :

When 2 is added to the denominator of the fraction, it becomes 4/7.

Numerator = x

Denominator = (y+2)

Equation :

\implies \sf{\dfrac{x}{y+2}\:=\:\dfrac{4}{7}}

\implies \sf{7x=4(y+2)}

\implies \sf{7\:\Big(\dfrac{10+2y}{5}\Big)\:=\:4y+8}

\bold{\Big[From\:equation\:(1)\:x\:=\:\dfrac{10+2y}{5}\Big]}

\implies \sf{\Big(\dfrac{70+14y}{5}\Big) \:=\:4y+8}

\implies \sf{70+14y=5(4y+8)}

\implies \sf{70+14y=20y+40}

\implies \sf{14y-20y=40-70}

\implies \sf{-6y=-30}

\implies \sf{y=\dfrac{-30}{-6}}

\implies \sf{y=\dfrac{30}{6}}

\implies \sf{y=5}

Substitute, y = 5 in equation (1),

\implies \sf{x=\dfrac{10+2y}{5}}

\implies \sf{x=\dfrac{10+2(5)}{5}}

\implies \sf{x=\dfrac{10+10}{5}}

\implies \sf{x=\dfrac{20}{5}}

\implies \sf{x=4}

\large{\boxed{\bold{Numerator\:=\:x\:=\:4}}}

\large{\boxed{\bold{Denominator\:=\:y\:=\:5}}}

\large{\boxed{\tt{\purple{Fraction\:=\:\dfrac{x}{y}\:=\:\dfrac{4}{5}}}}}


StarrySoul: Atiiiii Utttammm! ♥️ xD
Anonymous: Bahot Sundar
Answered by StarrySoul
70

Given :

• Fraction becomes 2/5 when 2 is subtracted from numerator

• Fraction becomes 4/7 when 2 is added to the denominator

To Find :

• The Fraction

Solution :

Let the numerator be x and denominator be y

Fraction = \sf\dfrac{x}{y}

When 2 is subtracted from the numerator :

 \longrightarrow \sf \:  \dfrac{x - 2}{y}  =  \dfrac{2}{5}

 \longrightarrow \sf \:  5(x - 2) = 2y

 \longrightarrow \sf \:  5x - 10 = 2y

 \longrightarrow \sf \:  5x  -  2y =10

 \longrightarrow \sf \:  5x    = 10 +   2y

 \longrightarrow \sf \:  x    =  \dfrac{10 + 2y}{5} ...(i)

When 2 is added to the denominator :

 \longrightarrow \sf \:  \dfrac{x }{y +2 }  =  \dfrac{4}{7}

 \longrightarrow \sf \:  7x = 4y + 8

Put the value of x from equation i)

 \longrightarrow \sf \:  7(  \dfrac{10 + 2y}{5} ) = 4y + 8

 \longrightarrow \sf \:   \dfrac{70 + 14y}{5}  = 4y + 8

 \longrightarrow \sf \:   70 + 14y = 5(4y + 8)

 \longrightarrow \sf \:   70 + 14y = 20y + 40

 \longrightarrow \sf \:   14y  - 20y= 40 - 70

 \longrightarrow \sf \:    - 6y =  - 30

 \longrightarrow \sf \:    y =    \cancel\dfrac{ - 30}{ - 6}

 \longrightarrow \sf \red{y = 5}

Put the value of y = 5 in equation i)

 \longrightarrow \sf \:  x    =  \dfrac{10 + 2y}{5}

 \longrightarrow \sf \:  x    =  \dfrac{10 + 2(5)}{5}

 \longrightarrow \sf \:  x    =  \dfrac{10 + 10}{5}

 \longrightarrow \sf \:  x    =   \cancel\dfrac{20}{5}

 \longrightarrow \sf \red{x = 4}

Hence,

 \dag \:  \:  \large \boxed{ \purple{ \sf \: Fraction =  \dfrac{x}{y}  =  \dfrac{4}{5} }}


Anonymous: Awesome
StarrySoul: Thank you Wishes! ♡
Similar questions