Math, asked by trishabh2249, 10 months ago

A fraction becomes 4/5 if 1 is added to numerator and becomes 1/2 if 5 is substracted from numerator and denominator . Find the fraction

Answers

Answered by amitkumar44481
2

 \large \mathfrak \red{Given:-}

  \tt{A  \: fraction  \: become s  \: 4/5} \\    \tt{ if  \: 1 \:  i s  \: added \:  to \:  numerator.}

 \:  \:  \:  \:  \:  \:  \tt{Let  \: numerator  \: be  \: x \:  and  } \\    \:  \:  \:  \:  \:  \: \tt{denominator \:  be \:  y.}

 \\   \:  \:  \:  \:  \:  \: \tt{ \frac{4}{5}  =  \frac{x + 1}{y} }

 \:  \:  \:  \:  \:  \:  \tt{4y = 5x  + 5.}

  \:  \:  \:  \:  \:  \: \tt{5x - 4y =  - 5. -  -  - (1)} \\  \\

 \tt{and \:  becomes  \: 1/2 \:  if \:  5  \: is } \\    \tt{substracted  \: from} \\   \tt{numerator  \: and  \: denominator.}

 \\  \:  \:  \:  \:  \:  \:  \tt{ \frac{1}{2}  =  \frac{x - 5}{y - 5} }

  \:  \:  \:  \:  \:  \: \tt{y - 5 = 2x - 10.}

 \:  \:  \:  \:  \:  \:  \tt{2x - y = 5. -  -  - (2)}

  \tt{Find \:  the  \: fraction.}

 \tt{From  \: equation} \\  \:  \:  \:  \:  \:  \tt{  (1 ) \times \:  2 \:  and  \: 2 \times  5 ,we  \: get}

  \\ \:  \:  \:  \:  \:  \:  \tt{3y = 15.}

 \:  \:  \:  \:  \:  \:  \tt{y = 5.}

 \tt{Putting  \: the  \: value  \: of \:  y= 5 } \\  \tt{in  \: equation \:  (2)}

  \:  \:  \:  \:  \:  \: \tt{2x  - y= 5.}

 \:  \:  \:  \:  \:  \:  \tt{2x - 5 = 5.}

 \:  \:  \:  \:  \:  \:  \tt{2x  = 10.}

 \:  \:  \:  \:  \:  \:  \tt{x = 5.}

 \tt{Therefore, the  \: numerator \:  be  } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{5  \: and  \: denominator  \: be  \: 5.}

Similar questions