Math, asked by hiteshsri2, 9 months ago

a fraction becomes 9/11 if 2 is added to bith numerator and denominator . if 3 is added to both numerator and denominator it becomes 5/6 find the fraction​

Answers

Answered by Anonymous
9

let the fraction is x/y.

Then by the given question,

(x+2)/(y+2)=9/11

or, 11x+22=9y+18

or, 11x-9y=18-22

or, 11x-9y=-4

or, 11x=9y-4

or, x=(9y-4)/11.

and, (x+3)/(y+3)=5/6

or, 6x+18=5y+15

or, 6x-5y=15-18

or, 6(9y-4)/11-5y=-3

or, (54y-24-55y)11=-3

or, -y-24=-3×11

or, y+24=33

or, y=33-24=9

then, x=(9×9-4)/11

or, x=(81-4)/11.

or, x=77/11=7

∴, x=7,y=9 and the

Answered by Anonymous
22

Given :

  • A fraction becomes 9/11 if 2 is added to both numerator and denominator.
  • If 3 is added to numerator and denominator both fraction becomes 5/6.

To Find :

  • The fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction = \bold{\dfrac{x}{y}}

Case 1 :

When 2 is added to the numerator and denominator of the fraction, it becomes 9/11.

Numerator = (x+2)

Denominator = (y+2)

Equation :

\implies \sf{\dfrac{x+2}{y+2}\:=\:\dfrac{9}{11}}

\implies \sf{11(x+2)=9(y+2)}

\implies \sf{11x+22=9y+18}

\implies \sf{11x-9y=18-22}

\implies \sf{11x-9y=-4}

\implies \sf{11x=-4+9y}

\large{\sf{x=\dfrac{-4+9y}{11}\:\:\:(1)}}

Case 2 :

If 3 is added to the numerator and denominator, the fraction becomes 5/6.

Numerator = (x+3)

Denominator = (y+3)

Equation :

\implies\sf{\dfrac{x+3}{y+3}\:=\:\dfrac{5}{6}}

\implies \sf{6(x+3)=5(y+3)}

\implies \sf{6x+18=5y+15}

\implies \sf{6x-5y=15-18}

\implies \sf{6x-5y=-3}

\implies \sf{6\:\Big(\dfrac{-4+9y}{11}\Big)-5y=-3}\bold{\Big[From\:equation\:(1)\:x\:=\:\dfrac{-4+9y}{11}\Big]}

\implies \sf{\dfrac{-24+54y}{11}-5y\:=\:-3}

\implies \sf{\dfrac{-24+54y-55y}{11}\:=\:-3}

\implies \sf{-24+54y-55y=11\:\times\:-3}

\implies \sf{-24+54y-55y=-33}

\implies \sf{54y-55y=-33+24}

\implies \sf{-y=-9}

\implies \sf{y=9}

Substitute, y = 9 in equation (1),

\implies \sf{x=\dfrac{-4+9y}{11}}

\implies \sf{x=\dfrac{-4+9(9)}{11}}

\implies \sf{x=\dfrac{-4+81}{11}}

\implies \sf{x=\dfrac{77}{11}}

\implies \sf{x=7}

\large{\boxed{\bold{Numerator\:of\:the\:fraction\:=\:x\:=\:7}}}

\large{\boxed{\bold{Denominator\:of\:the\:fraction\:=\:y\:=\:9}}}

\large{\boxed{\bold{\red{Fraction\:=\:\dfrac{x}{y}\:=\:\dfrac{7}{9}}}}}

Similar questions