Math, asked by rushisb576, 2 months ago

A fraction becomes 9/11, if 2 is added to both the numerator and denominator. If 3 isadded to both the numerator and denominator it becomes5/6, then the fraction



Note:- Dont solve it here Give direct answer

Answers

Answered by Anonymous
57

Answer:

  • The original fraction is 7/9

Step-by-step explanation:

Given:

  • A fraction becomes 9/11, if 2 is added to both the numerator and denominator
  • If 3 isadded to both the numerator and denominator it becomes5/6

To Find:

  • Find original the fraction

Assumptions:

  • Let the numerator be x
  • Let the denominator be y
  • Let the fraction be x/y

Solution:

According to the question,

\rightarrow \tt \qquad \dfrac{x+2}{y+2}= \dfrac{9}{11}

By Cross Multiplying,

\rightarrow \tt \qquad 11(x+2) = 9(y+ 2)

\rightarrow \tt \qquad 11x+22 = 9y+ 18

\rightarrow \tt \qquad 11x = 9y+ 18 - 22

\rightarrow \tt \qquad 11x = 9y - 4

\rightarrow \tt \qquad x  = 9y-4/11 ---(1)

As per 2nd condition,

\rightarrow \tt \qquad \dfrac{x+3}{y+3}= \dfrac{5}{6}

By Cross Multiplying we get,

\rightarrow \tt \qquad 6(x+3) = 5(y+ 3)

\rightarrow \tt \qquad 6x + 18 = 5y+ 15

Substituting the value of x we get,

\rightarrow \tt \qquad \dfrac{6(9y-4)}{11} + 18 = 5y+ 15

\rightarrow \tt \qquad \dfrac{6(9y-4)}{11} = 5y+ 15 - 18

\rightarrow \tt \qquad \dfrac{6(9y-4)}{11} = 5y - 3

\rightarrow \tt \qquad 6(9y-4) = 55y-33

\rightarrow \tt \qquad 54y- 24 = 55y-33

\rightarrow \tt \qquad 54y- 55y = -33 + 24

\rightarrow \tt \qquad -y = - 9

\rightarrow \tt \qquad {\pink{\boxed{\frak{y =  9}}}\purple\bigstar}

Now let's find out the value of x

\rightarrow \tt \qquad x  = 9y-4/11

\rightarrow \tt \qquad x  = 9(9)-4/11

\rightarrow \tt \qquad x  = 81 -4/11

\rightarrow \tt \qquad x  = 77 /11

\rightarrow \tt \qquad {\pink{\boxed{\frak{x=  7}}}\purple\bigstar}

Therefore:

  • {\pink{\boxed{\tt{Original \; Fraction = \dfrac{7}{9}}}}}

━━━━━━━━━━━━━━━━━━━━━━━


rsagnik437: Great ! :)
Answered by Anonymous
40

Answer:

7/9

Step-by-step explanation:

As per the provided information in the given question, we have :

  • A fraction becomes 9/11, if 2 is added to both the numerator and denominator.
  • If 3 is added to both the numerator and denominator it becomes 5/6.

Firstly, let's assume the numerator of the fraction be x & denominator of the fraction be y.

According to the question :

\begin{gathered} \longmapsto \rm { \frac{x _{(Numerator)} + 2}{y_{(Denominator)} + 2}  =  \frac{9}{11} } \\\end{gathered}

\begin{gathered} \longmapsto \rm { \frac{x _{(Numerator)} + 3}{y_{(Denominator)} + 3}  =  \frac{5}{6} } \\\end{gathered}

In order to find the fraction, Let's solve these,

\begin{gathered} \longmapsto \rm { \frac{x + 2}{y+ 2}  =  \frac{9}{11} } \\\end{gathered}

By cross multiplication,

\begin{gathered} \longmapsto \rm { 11(x + 2)} = {9(y+ 2)}\\\end{gathered}

Multiplying,

\begin{gathered} \longmapsto \rm { 11x + 22} = {9y+ 18}\\\end{gathered}

Transposing 18 to LHS, Changing it's sign,

\begin{gathered} \longmapsto \rm { 11x + 22 - 18} = {9y}\\\end{gathered}

\begin{gathered} \longmapsto \rm { 11x + 4} = {9y} _{(EQ - 1..) }\\\end{gathered}

_

\begin{gathered} \longmapsto \rm { \frac{x _{(Numerator)} + 3}{y_{(Denominator)} + 3}  =  \frac{5}{6} } \\\end{gathered}

By cross multiplication,

\begin{gathered} \longmapsto \rm {6(x  + 3) =5(y + 3)  } \\\end{gathered}

Multiplying,

\begin{gathered} \longmapsto \rm {6x  + 18=5y + 15  } \\\end{gathered}

Transposing 15 to LHS, Changing it's sign,

\begin{gathered} \longmapsto \rm {6x  + 18 - 15=5y } \\\end{gathered}

\begin{gathered} \longmapsto \rm {6x  + 3=5y } _{(EQ - 2..) } \\\end{gathered}

From EQ – 1..,

\begin{gathered} \longmapsto \rm { 11x + 4} = {9y} \\\end{gathered}

\begin{gathered} \longmapsto \rm  {9y}  = { 11x + 4}  \\\end{gathered}

\begin{gathered} \longmapsto \rm  {y}  =  \frac{{ 11x + 4}}{9}   \\\end{gathered}

Substituting the value of y in EQ - 2...,

\begin{gathered} \longmapsto \rm {6x  + 3=5y } \\\end{gathered}

\begin{gathered} \longmapsto \rm {6x  + 3=5 \bigg(\frac{{ 11x + 4}}{9} \bigg)} \\\end{gathered}

\begin{gathered} \longmapsto \rm {6x  + 3= \frac{55}{9} x +  \frac{20}{9} } \\\end{gathered}

Subtracting 55/9x from both sides,

\begin{gathered} \longmapsto \rm {6x  + 3 -  \frac{55}{9}x = \frac{55}{9} x +  \frac{20}{9}  -  \frac{55}{9}x } \\\end{gathered}

\begin{gathered} \longmapsto \rm {  \frac{ - 1}{9}x + 3  = \frac{20}{9}  } \\\end{gathered}

\begin{gathered} \longmapsto \rm {  \frac{ - 1}{9}x = \frac{20}{9}  - 3 } \\\end{gathered}

\begin{gathered} \longmapsto \rm {  \frac{ - 1}{9}x =  \frac{ - 7}{9}  } \\\end{gathered}

Comparing LHS & RHS,

\begin{gathered} \longmapsto \rm {   - 1x =   - 7 } \\\end{gathered}

\begin{gathered} \longmapsto \rm {  x =     \cancel{\frac{ - 7}{ - 1} } } \\\end{gathered}

\begin{gathered} \longmapsto \rm {  x =     7} \\\end{gathered}

« Putting x = 7 in Equation 2...,

\begin{gathered} \longmapsto \rm {6x  + 3=5y } \\\end{gathered}

\begin{gathered} \longmapsto \rm {6(7)  + 3=5y } \\\end{gathered}

\begin{gathered} \longmapsto \rm {42  + 3=5y } \\\end{gathered}

\begin{gathered} \longmapsto \rm {5y = 45 } \\\end{gathered}

\begin{gathered} \longmapsto \rm {y =   \cancel{\frac{45}{5} } } \\\end{gathered}

\begin{gathered} \longmapsto \rm {y =   9 } \\\end{gathered}

∴ x = 7 & y = 9, So, The fraction is 7/9.


rsagnik437: Awesome ! :)
Similar questions