Math, asked by honnanayakanahalli64, 4 months ago

a fraction becomes 9 by 11 if 2 is added to both the numerator and denominator if 3 is added to both the numerator and the denominator it becomes 5 by 6 find the fraction​

Answers

Answered by vedantsah
5

Answer:

Answer in explanation. Please mark me as brainliast. Hope it helps.

Step-by-step explanation:

Let the fraction be

y

x

Given that

y+2

x+2

=

11

9

⇒11x+22=9y+18

⇒11x−9y+4=0→i

y+3

x+3

=

6

5

⇒6x+18=5y+15

⇒6x−5y+3=0→ii

⇒i×5−ii×9

⇒55x−45y+20=0

⇒54x−45y+27=0

eq(i)−eq(ii)

⇒x−7=0

⇒x=7

⇒y=

9

11x+4

=

9

11(7)+4

=

9

81

=9

∴Fraction is

y

x

=

9

7

Please mark me as brainliast. Hope it helps.

Answered by MysticalStar07
96

Let the numerator of the fraction be x.

Let the numerator of the fraction be x.And the denominator of the fraction be y.

\displaystyle{\sf\:The\:fraction\:=\:\dfrac{x}{y}}

From the first condition,

\displaystyle{\sf\:\dfrac{x\:+\:2}{y\:+\:2}\:=\:\dfrac{9}{11}}

\displaystyle{\implies\sf\:11\:\times\:(\:x\:+\:2\:)\:=\:9\:\times\:(\:y\:+\:2\:)}

\displaystyle{\implies\sf\:11x\:+\:22\:=\:9y\:+\:18}

\displaystyle{\implies\sf\:11x\:-\:9y\:=\:18\:-\:22}

\displaystyle{\implies\sf\:11x\:-\:9y\:=\:-\:4\:\:\:-\:-\:(\:1\:)}

From the second condition,

\displaystyle{\sf\:\dfrac{x\:+\:3}{y\:+\:3}\:=\:\dfrac{5}{6}}

\displaystyle{\implies\sf\:6\:\times\:(\:x\:+\:3\:)\:=\:5\:\times\:(\:y\:+\:3\:)}

\displaystyle{\implies\sf\:6x\:+\:18\:=\:5y\:+\:15}

\displaystyle{\implies\sf\:6x\:-\:5y\:=\:15\:-\:18}

\displaystyle{\implies\sf\:6x\:-\:5y\:=\:-\:3\:\:\:-\:-\:(\:2\:)}

Multiplying equation ( 1 ) by 5 and equation ( 2 ) by 9, we get,

\displaystyle{\sf\:11x\:-\:9y\:=\:-\:4\:\:\:-\:-\:(\:1\:)}

\displaystyle{\implies\sf\:5\:\times\:(\:11x\:-\:9y\:)\:=\:-\:4\:\times\:5}

\displaystyle{\implies\sf\:55x\:-\:45y\:=\:-\:20\:\:\:-\:-\:(\:3\:)}

\displaystyle{\sf\:6x\:-\:5y\:=\:-\:3\:\:\:-\:-\:(\:2\:)}

\displaystyle{\implies\sf\:9\:\times\:(\:6x\:-\:5y\:)\:=\:-\:3\:\times\:9}

\displaystyle{\implies\sf\:54x\:-\:45y\:=\:-\:27\:\:\:-\:-\:(\:4\:)}

By subtracting equation ( 4 ) from equation ( 3 ), we get,

\displaystyle{\sf\:55x\:-\:45y\:-\:(\:54x\:-\:45y\:)\:=\:-\:20\:-\:(\:-\:27\:)}

\displaystyle{\implies\sf\:55x\:-\:\cancel{45y}\:-\:54x\:+\:\cancel{45y}\:=\:-\:20\:+\:27}

\displaystyle{\implies\sf\:55x\:-\:54x\:=\:7}

\displaystyle{\implies\boxed{\red{\sf\:x\:=\:7}}}

By substituting x = 7 in equation ( 2 ), we get,

\displaystyle{\sf\:6x\:-\:5y\:=\:-\:3\:\:\:-\:-\:-\:(\:2\:)}

\displaystyle{\implies\sf\:6\:\times\:7\:-\:5y\:=\:-\:3}

\displaystyle{\implies\sf\:42\:-\:5y\:=\:-\:3}

\displaystyle{\implies\sf\:-\:5y\:=\:-\:3\:-\:42}

\displaystyle{\implies\sf\:\cancel{-}\:5y\:=\:\cancel{-}\:45}

\displaystyle{\implies\sf\:5y\:=\:45}

\displaystyle{\implies\sf\:y\:=\:\cancel{\dfrac{45}{5}}}

\displaystyle{\implies\boxed{\purple{\sf\:y\:=\:9}}}

\displaystyle{\therefore\:\underline{\boxed{\blue{\sf\:The\:fraction\:=\:\dfrac{7}{9}}}}}

◕ ◕ ◕ ◕ ✔ ❤࿐

Similar questions