Math, asked by rivanshiarora2, 5 months ago

A fraction is such that, if the numerator is multitiplied by 3 and denominator reduced by 3 we get 18/11 but, if numerator is increased by 8 and denominator is double we get 2/5. Find the fraction ​

Answers

Answered by TheProphet
3

S O L U T I O N :

Let the numerator place digit be x & let the denominator place digit be y respectively.

\boxed{\bf{The\:fraction = \frac{x}{y} }}

A/q

\underbrace{\sf{1^{st}\;Case\::}}

\mapsto\tt{\dfrac{3 \times x}{y - 3} =\dfrac{18}{11} }

\mapsto\tt{\dfrac{3 x}{y - 3} =\dfrac{18}{11} }

\mapsto\tt{18(y-3) = 11(3x)\:\:\:\underbrace{\sf{Cross-multiplication}}}

\mapsto\tt{18y - 54 = 33x}

\mapsto\tt{18y =33x + 54}

\mapsto\tt{y =33x + 54/18.................(1)}

\underbrace{\sf{2^{nd}\;Case\::}}

\mapsto\tt{\dfrac{x+8}{2y} =\dfrac{2}{5} }

\mapsto\tt{2(2y) = 5(x+8)\:\:\:\underbrace{\sf{Cross-multiplication}}}

\mapsto\tt{4y = 5x +40}

\mapsto\tt{4y-5x = 40}

\mapsto\tt{4\bigg(\dfrac{33x+54}{18} \bigg) - 5x = 40\:\:[from(1)]}

\mapsto\tt{\dfrac{132x+216}{18} - 5x = 40}

\mapsto\tt{132x +216 - 90x = 720}

\mapsto\tt{132x - 90x  = 720-216}

\mapsto\tt{42x  = 504}

\mapsto\tt{x = \cancel{504/42}}

\mapsto\bf{x=12}

Putting the value of x in equation (1),we get;

\mapsto\tt{y = \dfrac{33(12) + 54}{18} }

\mapsto\tt{y = \cancel{\dfrac{450}{18} }}

\mapsto\bf{y = 25}

Thus,

\boxed{\bf{The\:fraction = \frac{x}{y} = \frac{12}{25}  }}

Similar questions