Math, asked by monalisapalata2009, 3 months ago

A Fraction is such that the denominator is 5 more than numerator. If denominator is increased by 2, the fraction becomes 1/2. Find the answer​

Answers

Answered by saranyab620
0

Step-by-step explanation:

the original fracruin is 7 / 12

Attachments:
Answered by george0096
3

Answer:

  • The fraction is 7/12.

Step-by-step explanation:

Given that:

  • A fraction is such that the denominator is 5 more than the numerator.
  • If the denominator is increased by 2, the fraction becomes 1/2.

To find:

  • The fraction.

Let us assume:

  • The numerator be x.

Then,

  • The denominator will be (x + 5).

If denominator is increased by 2:

  • The denominator will be (x + 5 + 2) = (x + 7)

According to the question:

\sf{\implies\dfrac{x}{x+7}=\dfrac{1}{2}}

By cross-multiplication:

\sf{\implies x+7=2x}

Transposing variables to LHS, constants to RHS and changing their sign,

\sf{\implies x-2x=-7}

Subtracting,

\sf{\implies -x=-7}

\sf{\implies \not\!{-}x=\not\!{-}7}

\bf{\implies x=7}

Hence,

  • x = 7

Therefore,

  • Numerator = x = 7
  • Denominator = x + 5 = 7 + 5 = 12

And,

  • The fraction is 7/12.
Similar questions