A freely falling body, falling from a tower of height h covers a distance of h/3 in the last second of its fall. What is the height of the tower?
Answers
Answer:
148 m approximately
Explanation:
Let total time taken to reach the ground be "T" seconds
Use equation of motion
- S = ut + 0.5at²
For total fall
h = (0 × T) + 0.5gT²
h = 0.5gT² ......(1)
For the time "T - 1" seconds
h - h/3 = (0 × T) + [0.5g(T - 1)²]
2h/3 = 0.5g(T - 1)² .......(2)
Divide equations (1) and (2)
h / (2h/3) = 0.5gT² / [0.5g(T - 1)²]
3/2 = [T / (T - 1)]²
√3/√2 = T / (T - 1)
T√3 - √3 = T√2
T(√3 - √2) = √3
T = √3 / (√3 - √2) seconds
Substitute value of T in equation (1)
h = 0.5gT²
= 0.5 × 9.8 m/s² × [√3 / (√3 - √2) s]²
= 4.9 × 3/(√3 - √2)² m
= 14.7 / (0.318)² m
≈ 148 m
Let total time taken to reach the ground be "T" seconds
Use equation of motion
S = ut + 0.5at²
For total fall
h = (0 × T) + 0.5gT²
h = 0.5gT² ......(1)
For the time "T - 1" seconds
h - h/3 = (0 × T) + [0.5g(T - 1)²]
2h/3 = 0.5g(T - 1)² .......(2)
Divide equations (1) and (2)
h / (2h/3) = 0.5gT² / [0.5g(T - 1)²]
3/2 = [T / (T - 1)]²
√3/√2 = T / (T - 1)
T√3 - √3 = T√2
T(√3 - √2) = √3
T = √3 / (√3 - √2) seconds
Substitute value of T in equation (1)
h = 0.5gT²
= 0.5 × 9.8 m/s² × [√3 / (√3 - √2) s]²
= 4.9 × 3/(√3 - √2)² m
= 14.7 / (0.318)² m
≈ 148 m