A frustum of a right circular cone has a diameter of base 20 cm, of top 12 cm, and height 3 cm. Find the area of its whole surface and volume.
wardahd1234:
ok
Answers
Answered by
31
Answer:
The Whole Surface area of frustum is 678.85 cm² and Volume of the of frustum = 616 cm³
Step-by-step explanation:
SOLUTION :
Diameter of top of frustum = 12 cm
Radius of top of frustum, r = 12/2 = 6 cm
Diameter of Bottom of frustum = 20 cm
Radius of Bottom of frustum,R = 20/2 = 10 cm
Height of frustum ,h = 3 cm
Slant height of frustum,l = √ (R - r)² + h²
= √(10 - 6)² + (3)²
= √4² + 9 = √16 + 9
= √25
= 5 cm
slant height ,l = 5 cm
Whole Surface area of frustum = π(R + r)l + πR² + πr²
= 22/7 (10+6)×5 + 22/7 × 10² + 22/7 × 6²
= 22/7(16×5 + 100 + 36)
= 22/7 (80 + 136)
= 22/7 × 216 = 4752/7
Whole Surface area of frustum = 678.85 cm²
Volume of frustum = 1/3πh(R² + r² + Rr)
= ⅓ × 22/7 ×3 (10² + 6² + 10×6)
= 22/7 (100 + 36 + 60)
= 22/7 × 196
= 22 × 28 = 616 cm³
Volume of the of frustum = 616 cm³
Hence, the Whole Surface area of frustum is 678.85 cm² and Volume of the of frustum = 616 cm³
HOPE THIS ANSWER WILL HELP YOU....
Answered by
6
ANSWER:
Given base diameter of cone
(d1)(d1)=20cmRadius (r1)
(r1) = 202cm=10cm202cm=10c
mTop diameter of Cone (d2)(d2) = 12 cmRadius (r2)(r2) = 122
cm=6cm122cm=6cmHeight of the cone (h)=
3cmVolume of the frustum right circular cone
= Π3(r21+r22+r1r2)hΠ3(r21+r22+r1r2)
h= Π3(102+62+10×6)3Π3(102+62+10×6)3=616 cm3cm3
Let ‘L’ be the slant height of cone=>L
= √(r1−r2)2+h2(r1−r2)2+h2−−−−−−−−−−−−√=>L
= √(10−6)2+32(10−6)2+32−−−−−−−−−−−√=>L
= √2525−−√=>L = 5 cm
∴∴ Slant height of cone (L)
(L)= 5 cm Total surface area of the cone
=Π(r1+r2)×L+Π×r21+Pi×r22Π
(r1+r2)×L+Π×r21+Pi×r22
= Π(10+6)×5+Π×102+Pi×62Π(10+6)×5+Π×102+Pi×62
= Π(80+100+36)Π(80+100+36)
= Π(216)Π(216)= 678.85
cm 2678.85cm2∴∴Total surface area of the cone =678.85 cm2cm2
hope it helps:--
Given base diameter of cone
(d1)(d1)=20cmRadius (r1)
(r1) = 202cm=10cm202cm=10c
mTop diameter of Cone (d2)(d2) = 12 cmRadius (r2)(r2) = 122
cm=6cm122cm=6cmHeight of the cone (h)=
3cmVolume of the frustum right circular cone
= Π3(r21+r22+r1r2)hΠ3(r21+r22+r1r2)
h= Π3(102+62+10×6)3Π3(102+62+10×6)3=616 cm3cm3
Let ‘L’ be the slant height of cone=>L
= √(r1−r2)2+h2(r1−r2)2+h2−−−−−−−−−−−−√=>L
= √(10−6)2+32(10−6)2+32−−−−−−−−−−−√=>L
= √2525−−√=>L = 5 cm
∴∴ Slant height of cone (L)
(L)= 5 cm Total surface area of the cone
=Π(r1+r2)×L+Π×r21+Pi×r22Π
(r1+r2)×L+Π×r21+Pi×r22
= Π(10+6)×5+Π×102+Pi×62Π(10+6)×5+Π×102+Pi×62
= Π(80+100+36)Π(80+100+36)
= Π(216)Π(216)= 678.85
cm 2678.85cm2∴∴Total surface area of the cone =678.85 cm2cm2
hope it helps:--
Similar questions