Math, asked by msschellamuthu1975, 5 months ago

A function f is defined by f(x) = 3 - 2x . Find e such that f(x²) = (f(x))²​

Answers

Answered by Anonymous
2

Step-by-step explanation:

 \huge \underline{ \color{lime} \tt \color{red}Solution}

 \sf f(x) = 3 - 2x \\  \\

 \sf f( {x}^{2} ) = 3 -  {2x}^{2}  \\  \\

 \sf \big[f(x)  {\big]}^{2}  = (3 - 2x {)}^{2}  \\  \\

 \sf  \implies \: \:  \:  \:  \:  \:  \:  \:  \: 9 - 12x +  {4x}^{2}  \\  \\

 \sf 3 -  {2x}^{2}  = 9 - 12x +  {4x}^{2}  \\  \\

 \sf {4x}^{2}  +  {2x}^{2}  - 12x + 9 - 3 = 0 \\  \\

 \sf  {6x}^{2}  - 12x  + 6 \div  =  \div 6 \\  \\

 \sf  {x}^{2}  - 2x + 1 = 0 \\  \\

 \sf  {x}^{2}  - 1x - 1x + 1 = 0 \\  \\

 \sf x(x - 1) - 1(x - 1) = 0 \\  \\

 \sf (x - 1)(x - 1) = 0 \\  \\

 \large \fbox{ \sf \color{lime}x = 1 }

Similar questions