Math, asked by crystalphyocrystal, 11 hours ago

A function f is defined on the positive integers satisfied f(1)=2010 and f(1)+f(2) +... +f(n) =n^2f(n). Find f(4).​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:f(1) = 2010

and

\rm :\longmapsto\:f(1) + f(2) +  -  -  -  -  + f(n) =  {n}^{2}f(n)

Now, Its a sum of n terms of series.

So, Sum of 2 terms is evaluated by substituting n = 2 in above series.

So,

\rm :\longmapsto\:f(1) + f(2)  =  {2}^{2}f(2)

\rm :\longmapsto\:f(1) + f(2)  =  4f(2)

\rm :\longmapsto\:f(1)  =  4f(2) - f(2)

\rm :\longmapsto\:f(1)  =  3f(2)

\bf\implies \:f(2) = \dfrac{f(1)}{3}

Now, Sum of first three terms of the series is evaluated by substituting n = 3, in above given series is

\rm :\longmapsto\:f(1) + f(2) + f(3)  =  {3}^{2}f(3)

\rm :\longmapsto\:f(1) + f(2) + f(3)  =  9f(3)

\rm :\longmapsto\:f(1) + f(2) =  9f(3) - f(3)

\rm :\longmapsto\:f(1) + \dfrac{f(1)}{3}  =  8f(3)

\rm :\longmapsto\:\dfrac{3f(1) + f(1)}{3}  =  8f(3)

\rm :\longmapsto\:\dfrac{4f(1)}{3}  =  8f(3)

\bf\implies \:f(3) = \dfrac{f(1)}{6}

Now, Sum of first four terms of the series is evaluated by substituting n = 4, in above given series is

\rm :\longmapsto\:f(1) + f(2) + f(3) + f(4)  =  {4}^{2}f(4)

\rm :\longmapsto\:f(1) + f(2) + f(3)=  16f(4) - f(4)

\rm :\longmapsto\:f(1) + \dfrac{f(1)}{3}  + \dfrac{f(1)}{6} =  15f(4)

\rm :\longmapsto\:\dfrac{6f(1) + 2f(1) + f(1)}{6} =  15f(4)

\rm :\longmapsto\:\dfrac{9f(1)}{6} =  15f(4)

\rm :\longmapsto\:\dfrac{3f(1)}{2} =  15f(4)

\bf\implies \:f(4) = \dfrac{f(1)}{10}

\bf\implies \:f(4) = \dfrac{2010}{10}  = 201

Hence,

\purple{\bf\implies \:\boxed{\tt{ \:  \:  \:  f(4) = \dfrac{2010}{10}  = 201 \:  \:  \: }}}

Similar questions