Math, asked by adorablequeen14, 3 months ago

A function f(x) is defined as f(x) [x],
where r is the greatest integer not greater
than x; -2 < x < 2. Discuss its continuity
and differentiability at x = 1.
1.​

Answers

Answered by mathdude500
7

\large\underline{\bold{Given \:Question - }}

  • A function f(x) is defined as f(x) = [x], where [.] is the greatest integer not greater than x; -2 < x < 2. Discuss its continuity and differentiability at x = 1.

  \underline{\bf \bold{ \: Answer \:}}

Let us first define the function, f(x) = [x], where -2 < x < 2.

\begin{gathered}\begin{gathered}\bf \:f(x) = \begin{cases} &amp;\sf{ - 2 \:  \: when \:  - 2 &lt; x &lt;  - 1} \\ &amp;\sf{ - 1 \:  \: when \:  - 1  \leqslant  x &lt; 0}\\ &amp;\sf{0 \:  \:  \: \: when \:  \:  0\leqslant   x &lt; 1}\\ &amp;\sf{1 \:  \:  \: when \: \:  1  \leqslant  x &lt; 2} \end{cases}\end{gathered}\end{gathered}

Basic Concepts :-

Definition of continuity :-

  • A function f(x) is continuous at x = 'a' iff

\rm :\longmapsto\:f(1) = \bf \:\lim_{x\to 1^-} = \bf \:\lim_{x\to 1^ + }

Definition of Differentiability :-

  • A function f (x) is said to be differentiable iff

\rm :\longmapsto\:\bf \:\lim_{x\to a^-} \: \dfrac{f(x) - f(a)}{x - a}  = \:\lim_{x\to a^ + } \: \dfrac{f(x) - f(a)}{x - a}

Let's solve the problem now!!

Now,

  • Continuity at x = 1

\rm :\longmapsto\:f(1) = 1 -  - (1)

Now,

Consider

  • Left Hand Limit

\rm :\longmapsto\:\bf \:\lim_{x\to 1^-} \: f(x)

\rm :\longmapsto\:\bf \:\lim_{x\to 1^-}0

\rm :\longmapsto\:0 -  - (2)

  • From equation (1) and (2), we concluded

\rm :\longmapsto\:f(1) \:  \ne \: \bf \:\lim_{x\to 1^-}

\bf :\implies\: \boxed{ \bf \: f(x) \: is \: not \: continuous \: at \: x \:  =  \: 1}

Now,

  • To check differentiability at x = 1

Consider,

  • Left Hand Derivative

\rm :\longmapsto\:\bf \:\lim_{x\to 1^-} \: \dfrac{f(x) - f(1)}{x - 1}

\rm :\longmapsto\:\bf \:\lim_{x\to 1^-} \: \dfrac{0 - 1}{x - 1}

\rm :\longmapsto\:\bf \:\lim_{x\to 1^-} \: \dfrac{ - 1}{x - 1}

\rm :\longmapsto\:\bf \:\lim_{x\to 1^-} \: \dfrac{1}{1 - x}

 \tt \: Put \:  x = 1- h,  \: as \: x \to \: 1 ,  \: so \:  h \to \: 0

\rm :\longmapsto\:\bf \:\lim_{h\to 0} \: \dfrac{1}{1 - (1 - h)}

\rm :\longmapsto\:\bf \:\lim_{h\to 0} \: \dfrac{1}{h}

\rm :\longmapsto\: \infty \:( which \: is \: not \: finite \: number)

\rm :\implies\: \boxed{ \bf \: f(x) \: is \: not \: differentiable \: at \: x \:  =  \: 1}

Additional Information :-

If f(x) and g(x) are continuous at x=a, and if c is a constant, then

  • f(x) + g(x) is continuous at x = a.

  • f(x) − g(x) is continuous at x = a.

  • cf(x) is continuous at x = a.

  • f(x)g(x) is continuous at x = a

  • f(x)/g(x) is continuous at x = a, provided that g(a) ≠ 0.

  • Every differentiable function is always continuous but converse needn't to be true.

Similar questions