Math, asked by HeraLee, 19 days ago

A function of f is f(x) = px + q. Given that f(1) = -5 and f(-2) = -10, find the value of p and q. Hence, find f⁻¹(x).

Answers

Answered by suhail2070
0

Answer:

p =  \frac{5}{3}  \\  \\ q =  - 5 -  \frac{5}{ 3}  \\  \\ q =  \frac{ - 20}{3}  \\  \\ f(x) =  \frac{5x}{3}   -  \frac{20}{3}  \\  \\therefore \:  \:  \:  {f}^{ - 1} (x) =  \frac{3x + 20}{5} .

Step-by-step explanation:

f(x) = px + q \\  \\ f(1) =  - 5 \\  \\ p + q =  - 5 \:  \:  \:  \: ...(i) \\  \\ f(-2) =  - 2p + q =  - 10 \:  \:  \:  \: ...(ii) \\  \\ solving \: these \:  \: we \: get \\  \\  3p = 5 \\  \\ p =  \frac{5}{3}  \\  \\ q =  - 5 -  \frac{5}{ 3}  \\  \\ q =  \frac{ - 20}{3}  \\  \\ f(x) =  \frac{5x}{3}   -  \frac{20}{3}  \\  \\ f(x) =  \frac{5(x - 4)}{3}  \\  \\ therefore \:  \:  \:  \: 3y = 5x - 20 \\  \\ 5x = 3y + 20 \\  \\ x=  \frac{3y + 20}{5}  \\  \\ therefore \:  \:  \:  {f}^{ - 1} (x) =  \frac{3x + 20}{5} .

Answered by haihello70877
0

Answer:

given f(x)=px+q & f(1)=-5,f(-2)=-10

f(1)=p(1)+q&f(-2)=p(-2)+q

-5=p+q&-10=-2p+q

by solving these two

p+q=-5

-2p+q=-10

now we get 3p=5

p= 5/3

5/3+q=-5

q=-5-5/3

q=-15-5/3

q=-10/3

let f(x)=y

x= f inverse of y

px+q=y

5/3-10/3=y

-5=y

swap x and y

f(y)=x

y= f inverse of x

so f inverse of x = -5

Similar questions