Math, asked by HeraLee, 1 day ago

A function of g is g(x) = mx + c. Given that g⁻¹(-3) = 0 and g⁻¹(1) = 2, find the value of g(5) and g⁻¹(4)

Answers

Answered by suhail2070
1

Step-by-step explanation:

y = mx + c \\  \\ mx = y - c \\  \\ x =  \frac{y - c}{m}  \\  \\ therefore \:  \:  \:  \:  {g}^{ - 1}  =  \frac{x- c}{m} \\  \\  {g}^{ - 1} ( - 3) = 0 \\  \\  \frac{ - 3 - c}{m}  = 0 \\  \\ c =  - 3 \\  \\  {g}^{ - 1} (1) = 2 \\  \\  \frac{1 - c}{m}  = 2 \\  \\ 1 + 3 = m \\  \\ m = 4 \\  \\ g(x) = mx + c \\  \\ g(5) = 5m + c \\  \\  = 5(4) - 3 \\  \\  = 17. \\  \\  {g}^{ - 1} (4) =  \frac{4 - c}{m }  \\  \\  =  \frac{4 + 3}{4}  \\  \\  =  \frac{7}{4} .

Similar questions