Math, asked by reddysiva57675, 7 months ago

a function y=f(x) satisfies xf'(x)-2f(x)=x^4f^2(x) ​

Answers

Answered by atishkumar15august
5

Step-by-step explanation:

tan30=

CD

AC

=>

CD

AC

=

3

1

=>LetAC=x,CD=x

3

AE=AC+CE=x+25

sin45=

2

1

=

AB

AE

=>

75

x+25

=

2

1

=> x=

2

75

2

−50

=27.85m

=> AC=27.85m,CD=48.18m

AD=

AC

2

+CD

2

=55.67m = lenght of string of second boy

solution.......

Answered by visalavlm
0

Answer:

f'(x)=24x^{-5}

Step-by-step explanation:

The formula for the derivative of x given as \frac{dy}{dx} or (x)' =1

The derivative of \frac{1}{x} = -\frac{1}{x^{2} }

Let u,v are two functions then the formula of integration is

\int\limits {uv} \, dx =u\int\limits {v} \, dx -\int\limits {u'} \, ( \int\limits{v} \, dx )dx

Given that,

x\frac{dy}{dx} -2y=x^{4} y^{2}

Dividing by xy^{2},

we get

\frac{1}{y^{2} } \frac{dy}{dx} -\frac{2}{xy} =x^{3}----------------(1)

This is a Bernoulli differential equation

put

-\frac{2}{y} =t\\\frac{2dy}{y^{2}dx } =\frac{dt}{dx}

Equation (1) becomes

\frac{1dt}{2dx} +\frac{t}{x} =x^{3} \\\frac{dt}{dx} +\frac{2t}{x} =2x^{3}

I.F. = e^{\int\limits \frac{2}{x}dx = e^{2lnx}  \\                                          =e^{lnx^{2} } \\                                          =x^{2}

so, general solution is given by

t.x^{2} =\int\limits( {x^{2} .2x^{3} }) \, dx =2\int\limits {x^{5} } \, dx

x^{2} t=\frac{2x^{6} }{6} +c\\-\frac{2x^{2} }{y} =\frac{x^{6} }{3} +c\\-\frac{2}{y} =\frac{x^{4} }{3} +\frac{c}{x^{2} }

If x=1, y=-6\\

then c=0

∴ The particular solution is

-\frac{2}{y} =\frac{x^{4} }{3} \\y=-\frac{6}{x^{4} }

That is f(x)=-\frac{6}{x^{4} }

then f'(x)=24x^{-5}

Similar questions