Physics, asked by soor075267, 19 days ago

A fuse wire melts at 5 A. It is desired that the fuse wire of the same material melt at 10 A. The new

the radius of the wire is

(a) 4 times (b) 2 times

(c) 1⁄2 times (d) 1⁄4 times

pls answer

Answers

Answered by saxshreshth
6

Answer:

b 2 times

Explanation:

because when radius increase the melting point increase s due to more volume which takes more time to heat or melt.

Answered by archanajhaa
8

Answer:

The radius of the new wire will be 2 times the original wire i.e. option (b).

Explanation:

For a given wire volume remains constant so,

V_1=V_2

A_1\times l_1=A_2 \times l_2

\frac{A_1}{A_2}=\frac{l_2}{l_1}             (1)

V=volume of the wire

A= area of the wire

l=length of the wire

r=radius of the wire

For resistance we have;

R=\rho \frac{l}{A}

\frac{R_1}{R_2}=\frac{l_1}{l_2} \times \frac{A_2}{A_1}      (2)

l₁=2πr₁

l₂=2πr₂

A₁=πr₁²

A₂=πr₂²

By putting equation (1), and, l₁,l₂, A₁, A₂ in equation (2) we get;

\frac{R_1}{R_2}=\frac{r_2}{r_1}      (3)

And,

\frac{I_1}{I_2}=\frac{V}{R_1}\times \frac{R_2}{V}

\frac{I_1}{I_2}=\frac{R_2}{R_1}            (4)

From the questions we have,

I₁=5A

I₂=10A

From equations (3) and (4) we have;

\frac{I_1}{I_2}=\frac{r_1}{r_2}           (5)

By placing I₁ and I₂ in equation (5) we get;

\frac{5}{10}=\frac{r_1}{r_2}

r_2=2r_1

Hence, The radius of the new wire will be 2 times the original wire i.e. option (b).

Similar questions