Math, asked by mukut89, 7 months ago

 A garden roller whose length is 3 m long and whose diameter is 2.8 m is rolled to level a garden. How much area will it cover in 8 revolutions?

422.4 sq.m

26.4 sq.m

211.2 sq.m

52.8 sq.m

Q. no 02: The radius of a conical tent is 7 m and the height is 24 m. Calculate its Curved Surface Area in square metres.

1364

550

264

528

Q. no 03: If the total surface area of a cone of radius 7 cm is 704 sq.cm, then find its slant height.

25 cm

26 cm

30 cm

24 cm

Q. no 04: If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area?

4178 sq.metres

4198 sq.metres

4158 sq.metres

4138 sq.metres

Q. no 05: Find the diameter of a sphere whose surface area is 154 sq.m.

(7/2) m

7 m

21 m

14 m

Answers

Answered by parteek35
1

Answer:

211.2 of (a)

528 of (b)

25 of (c)

4158 of (d)

7 of (e)

Answered by SpideySudar
1

Answer:

(c) 211.2 sq.m

Step-by-step explanation:

        We know that,

                  l = 3 m

                  diameter = 2.8 m , then, radius = 2.8 / 2 = 1.4 m.

         So, we get,

               circumference of the circle  = 2πr

                                                               = 2 x \frac{22}{7} x 1.4

                                                               = 2 x \frac{22}{7} x \frac{14}{10}

                                                               = 2 x 11 x \frac{2}{5}

                                                               = 8.8 m

               Area of the circle = length x circumference

                                              = 3 x 8.8

                                              = 26.4 m^{2}

               Area covered in 8 revolutions = 26.4 x 8

                                                                   = 211.2 m^{2}

Hence, we get the answer,

               Area covered by the garden roller in 8 revolutions = 211.2 m^{2}

Similar questions