Physics, asked by StrongGirl, 7 months ago

A gas has 3 translation and 2 rotational degrees of freedom. find \dfrac{C_{p} }{C_{v} }

Attachments:

Answers

Answered by amansharma264
13

ANSWER.

 \sf \to \:  \dfrac{ c_{p} }{ c_{v} } =  \dfrac{7}{5}

option [ 2 ] is correct answer.

EXPLANATION.

 \sf \to \: a \: gas \: has \: 3 \: translation \:  \: and \:  \: 2 \: rotation \: degree \\  \\  \sf  \to \: f \:  = translation \:  + rotation \\  \\  \sf \to \: f \:  = 3 +  2 = 5 \\  \\  \sf \to \:  \gamma = 1 +  \frac{2}{f}  \\  \\  \sf \to \:  \gamma \:  = 1 +  \frac{2}{5} \\  \\  \sf \to \:  \gamma \:  =  \frac{7}{5}

 \sf \to \: as \: we \: know \: that \:  \\  \\  \sf \to \:  \gamma \:  =  \frac{ c_{p}}{c_{v} }  \\  \\  \sf \to \:  \frac{ c_{p} }{ c_{v} }  =  \frac{7}{5}

Answered by ShivamKashyap08
14

Answer:

     \large\bullet\quad \boxed{\sf\dfrac{C_{p}}{C_{v}}=\dfrac{7}{5}}

Explanation:

\rule{300}{1.5}

Given, gas has 3 translational and 2 rotational degrees of freedom.so, let's find the total degrees of freedom.

\longmapsto \textsf{Total degrees of freedom}= \textsf{Translational + Rotational}

Therefore,

\longmapsto\sf f= 3 + 2\\\\\\\longmapsto\sf f= 5\\\\\\\longmapsto\boxed{\sf f= 5}

\rule{300}{1.5}

\rule{300}{1.5}

Now, From the formula we know that,

\large\bigstar\;\underline{\boxed{\sf C_{v}=\dfrac{f}{2}\;R}}

Here,

  • f Denotes Total Degrees of freedom.
  • R Denotes Universal Gas constant.

Substituting the values,

\longmapsto\sf C_{v}=\dfrac{f}{2}\;R\\\\\\\\\longmapsto\sf C_{v}=\dfrac{5}{2}\;R\\\\\\\\\longmapsto\sf C_{v}=\dfrac{5\;R}{2} \dots\dots \sf (1)

\rule{300}{1.5}

\rule{300}{1.5}

We know that,

\large\bigstar\;\underline{\boxed{\sf C_{p} = C_{v} + R}}

Here,

  • R Denotes Universal gas constant.

Substituting the values,

\longmapsto\sf C_{p}=\dfrac{5\;R}{2}+R\\\\\\\\\longmapsto\sf C_{p}=\dfrac{5R+2R}{2}\\\\\\\\\longmapsto\sf C_{p}=\dfrac{7\;R}{2}\dots\dots \sf (2)

\rule{300}{1.5}

\rule{300}{1.5}

Calculating the ratio,

\longmapsto\sf \dfrac{C_{p}}{C_{v}}=\dfrac{7/2\; R}{5/2\;R}\\\\\\\\\longmapsto\sf \dfrac{C_{p}}{C_{v}}=\dfrac{7/2}{5/2}\\\\\\\\\longmapsto\sf \dfrac{C_{p}}{C_{v}}=\dfrac{7}{5}\\\\\\\\\longmapsto\large{\underline{\boxed{\red{\sf \dfrac{C_{p}}{C_{v}}=\dfrac{7}{5}}}}}

Therefore, the value of C_{p}/C_{v} is 7/5.

\rule{300}{1.5}

Similar questions