Chemistry, asked by pandaXop, 1 month ago

A gaseous mixture contains O2 and N2 in

the ratio 1 : 4 by weight. Then the ratio of

their number of molecules in the mixture is

(A) 3 : 32 (B) 7 : 32

(C) 1 : 4 (D) 3 : 16​

Answers

Answered by EthicalElite
26

 \large \underline{\tt Given} :

 \\

A gaseous mixture contains O₂ and N₂ in the ratio of 1 : 4 by weight.

 \\

 \large \underline{\tt To \: Find} :

 \\

Ratio of number of molecules of O₂ and N₂ in the given mixture is

  1. 3 : 32
  2. 7 : 32
  3. 1 : 4
  4. 3 : 16

 \\

 \\

 \large \underline{\tt Answer} :

 \\

 \pink{\bf 7 : 32} is the correct answer.

So, correct option is (B).

 \\

 \large \underline{\tt Solution} :

 \\

As, we have a gaseous mixture contains O₂ and N₂ in the ratio of 1 : 4 by weight.

So, let weight of O₂ be "1x" and N₂ be "4x".

 \\

 \pink{\underline{\bf For \: O_2} : }

We have :

  • Weight of O₂ = 1x
  • Mass of one mole in O₂ = 32 g
  • Number of moles in O₂ = ?
  • Number of molecules in O₂ = ?

 \\

We know that :

 \pink{\underline{\underline{\boxed{\bf Number \: of \: moles = \dfrac{Mass}{Mass \: of \: one \: mole}}}}}

 \\

By substituting values :

 \sf : \implies Number \: of \: moles \: in \: O_2 = \dfrac{1x}{32}

 \\

 \pink{\underline{\boxed{\bf Number \: of \: moles \: in \: O_2 = \dfrac{x}{32\: g}}}}

 \\

Now, to find numbers of molecules, we have to multiply number of moles to Avogadro's number, which is 6.023 × 10²³.

 \pink{\underline{\underline{\boxed{\bf Number \: of \: molecules \: = Number \: of \: moles \: \times Avogadro's \: number}}}}

 \\

By substituting values :

 \sf : \implies Number \: of \: molecules \: in \: O_2 = \dfrac{x}{32\: g} \times (6.023 \times 10^{23})

 \\

 \pink{\underline{\boxed{\bf Number \: of \: molecules \: in \: O_2 = \dfrac{x}{32\: g} \times (6.023 \times 10^{23})}}}

 \\

 \pink{\underline{\bf For \: N_2} : }

We have :

  • Weight of N₂ = 4x
  • Mass of one mole in N₂ = 28 g
  • Number of moles in N₂ = ?
  • Number of molecules in N₂ = ?

 \\

We know that :

 \pink{\underline{\underline{\boxed{\bf Number \: of \: moles = \dfrac{Mass}{Mass \: of \: one \: mole}}}}}

 \\

By substituting values :

 \sf : \implies Number \: of \: moles \: in \: N_2 = \dfrac{4x}{28}

 \sf : \implies Number \: of \: moles \: in \: N_2 = \dfrac{1x}{7}

 \\

 \pink{\underline{\boxed{\bf Number \: of \: moles \: in \: N_2 = \dfrac{x}{7\: g}}}}

 \\

Now, to find numbers of molecules, we have to multiply number of moles to Avogadro's number, which is 6.023 × 10²³.

 \pink{\underline{\underline{\boxed{\bf Number \: of \: molecules \: = Number \: of \: moles \: \times Avogadro's \: number}}}}

 \\

By substituting values :

 \sf : \implies Number \: of \: molecules \: in \: N_2 = \dfrac{x}{7\: g} \times (6.023 \times 10^{23})

 \\

 \pink{\underline{\boxed{\bf Number \: of \: molecules \: in \: N_2 = \dfrac{x}{7\: g} \times (6.023 \times 10^{23})}}}

 \\

 \pink{\underline{\bf For \: Ratio \: of \: Number \: of \: molecules} : }

We have :

  • Number of molecules in O₂ =  \sf \dfrac{x}{32\: g} \times (6.023 \times 10^{23})
  • Number of molecules in N₂ =  \sf \dfrac{x}{7\: g} \times (6.023 \times 10^{23})

 \\

Now,

 \pink{\underline{\underline{\boxed{\bf Ratio \: of \: number \: of \: molecules \: in \: mixture = \dfrac{Number \: of \: molecules \: in \: O_2}{Number \: of \: molecules \: in \: N_2 }}}}}

 \\

By substituting values :

 \sf : \implies Ratio = \dfrac{\dfrac{x}{32\: g} \times \cancel{(6.023 \times 10^{23})}}{\dfrac{x}{7\: g} \times \cancel{(6.023 \times 10^{23})}}

 \sf : \implies Ratio = \dfrac{\dfrac{x}{32\: g}}{\dfrac{x}{7\: g}}

 \sf : \implies Ratio = \dfrac{\cancel{x}}{32\: \cancel{g}} \times \dfrac{7 \: \cancel{g}}{\cancel{x}}

 \sf : \implies Ratio = \dfrac{7}{32}

 \\

 \pink{\underline{\underline{\boxed{\bf Ratio\: of \: number \: of \: molecules \: in \: mixture = 7 : 32}}}}

 \\

 \underline{\sf Hence, \: Ratio \: of \: number \: of \: molecules \: in \: mixture\: is \: \pink{7 : 32}}

Answered by itsvirajThete
34

Answer:

 \huge \boxed{ \red{7 : 32}} \: is \: the \: answer

Explanation:

As given, the ratio of moles of O² or N² =

 \frac{1}{32} : \:  \frac{4}{28}  =  \frac{1}{32} : \:  \frac{1}{7} </p><p></p><p></p><p></p><p>

 \large \boxed{ \red{(as \: we \: know, \: mole = \frac{w}{m})}}</p><p></p><p>

The ratio of number of molecules =

 \frac{ \huge n \tiny a}{32}

Attachments:
Answered by itsvirajThete
20

Answer:

 \huge \boxed{ \red{7 : 32}} \: is \: the \: answer

Explanation:

As given, the ratio of moles of O² or N² =

 \frac{1}{32} : \:  \frac{4}{28}  =  \frac{1}{32} : \:  \frac{1}{7} </p><p></p><p></p><p></p><p>

 \large \boxed{ \red{(as \: we \: know, \: mole = \frac{w}{m})}}</p><p></p><p>

The ratio of number of molecules =

 \frac{ \huge n \tiny a}{32}

Attachments:
Similar questions