Math, asked by haaniya06, 6 months ago

A generator consumes 2\ \frac{2}{3} litres of diesel every hour. How much diesel will the generator consume in 7 \frac{1}{5} hours?

Answers

Answered by priyomrabhadas
10

Given :-

  • A generator consumes  {\sf 2\:{\dfrac{2}{3} litres of diesel every hour.

To Find :-

  • How much diesel will the generator consume in  {\sf 7\:{\dfrac{1}{5} hours?

Solution :-

  • Diesel consumes every hour =  {\sf 2\:{\dfrac{2}{3}\:L  = {\sf{\dfrac{2\:x\:3+2}{3}\:L = {\sf{\dfrac{8}{3}}\:L

  • ∴ Diesel consumed in {\sf 7\:{\dfrac{1}{5} hours = {\sf{\dfrac{7\:x\:5+1}{5}  = {\sf{\dfrac{36}{5}}

                                                              = {\sf{\dfrac{36}{5}}\:x\:{\sf{\dfrac{8}{3}}\:L

                                                               = {\sf{\dfrac{36\:x\:8}{5\:x\:3}\:L

                                                               = {\sf{\dfrac{288}{15}\:L

                                                                = 19.2 L

Ans. 19.2 L diesel will be consumed in {\sf 7\:{\dfrac{1}{5} hours.

\huge{\boxed{\sf{\ Hence\:\:Proved}}}

Similar questions