Math, asked by mango360, 11 months ago

A geometric progression has a second term of 12 and a sum to infinity of 54. Find the possible values of the first term of the progression.

Answers

Answered by Rohit18Bhadauria
5

Answer:

18 and 36

Given

  • Second term of G.P= 12
  • Sum of G.P. to infinity= 54

To Find:

  • Values of first term of G.P.

Solution

We know that,

\sf{General\:term\:of\:G.P.= ar^{n-1}}

where,

  • a is first term of G.P.
  • r is common difference of G.P.
  • n is no. of terms

So,

\sf{Second\:term\:of\:given\:G.P.= ar^{2-1}}

\sf{Second\:term\:of\:given\:G.P.= ar^{1}=ar}

\longrightarrow\sf{ar=12}

\longrightarrow\sf{r=\dfrac{12}{a}}----------(1)}

We also know that,

Sum of G.P. to infinity = \sf{\dfrac{a}{1-r},where\:r<1}

\longrightarrow\sf{\dfrac{a}{1-r}=54}

From (1),

\longrightarrow\sf{\dfrac{a}{1-\dfrac{12}{a}}=54}

\longrightarrow\sf{a=54(1-\dfrac{12}{a})}

\longrightarrow\sf{a=54(\dfrac{a-12}{a})}

\longrightarrow\sf{a^{2} =54(a-12)}

\longrightarrow\sf{a^{2} =54a-648}

\longrightarrow\sf{a^{2} -54a+648=0}

\longrightarrow\sf{a^{2} -36a-18a+648=0}

\longrightarrow\sf{a(a-36)-18(a-36)=0}

\longrightarrow\sf{(a-18)(a-36)=0}

\longrightarrow\sf{a=18,36}

Hence, possible values of first term are 18 and 36.

Similar questions