Physics, asked by sagavlogs2007, 1 month ago

A girl exerts a force of 6 N on a
body of mass m1, to produce an
acceleration of 12 m s -2? When the
same force is applied on a body
of mass m2, it is accelerated to
24 ms-2. If both the bodies are
joined together, and the same
force is applied on them, what is the
acceleration produced in the
combination.

Answers

Answered by itzMeGunjan
5

Given :-

  • Force = 6N
  • Acceleration of \bold{{m}_{1}(a_{1})}= 12m/s²
  • Acceleration of \bold{{m}_{2}(a_{2})}=24m/s²

According to Question,

if we sum \bold{{m}_{1}}and \bold{{m}_{2}} bodies then new body form let \bold{{m}_{3}} i.e,

 \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \large{ \rm{{m}_{1} + {m}_{2} = {m}_{3}}}} \:  -  - (1)

Find :-

  • Value of \rm{{m}_{1},{m}_{2},{m}_{3}}
  • Acceleration of \rm{{m}_{3}} \:\rm{{a}_{3}}

Solution :-

We know that, F = m × a

 \bold{F = 6\: (\red{\rm{Given}})}

Now, We have to find the mass of \rm{{m}_{1},{m}_{2}}

Mass of 1st body

  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm{F = m_{1 } \times \: a_{1 } } \\ \:  \:  \:  \:  \:  \:  \:  \  \rm{6 = m_{1 } \times 12} \\   \:  \: \rm{m_{1 } =  \frac{6}{12} } \\   \:  \: \rightarrow \boxed{ \rm \underline{{m_{1 } = 0.5 \: kg}}}

Mass of 2nd body

  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm{F = m_{2 } \times \: a_{1 } } \\ \:  \:  \:  \:  \:  \:  \:  \  \rm{6 = m_{2 } \times 24} \\   \:  \: \rm{m_{2 } =  \frac{6}{24} } \\   \:  \: \rightarrow \boxed{ \rm \underline{{m_{2 } = 0.25 \: kg}}}

Sum of \underline{\bold{m_{1},m_{2}}} /Mass of 3rd body

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  • \:  \bold{m_{1} = 0.5 \: kg} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: • \:  \bold{m_{2} = 0.25 \: kg}

Now, putting these values in equation (1)

  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: \rm{{m}_{1} + {m}_{2} = {m}_{3}} \\  \:  \:  \:  \:  \:  \:   \rightarrow \: \boxed{  \underline{\rm{ {m}_{3}} = 0.75 \: kg}}

Acceleration of \underline{\bold{\rm{{m}_{3}}}}(\rm{a_{3}})

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm{F = m_{3}  \times a _{3} } \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \rm{6 = 0.75 \times  a_{3}}  \\   \:  \:  \:  \:  \:  \:  \:  \: \rm{ a_{3} =  \frac{6}{0.75 } } \\  \:  \:  \:  \:  \:  \:  \:  \rightarrow \boxed{  \underline{ \rm{ \green{a_{3} = 8 }}}}

#Gunjan

Similar questions