A girl is twice as old as her sister. four years hence, the product of their ages will be 160 find the present ages?
Answers
Answered by
3
Let the girl be 'x' . And Let her sister be '2x'.
Therefore,
(2x+4)(x+4)=160
2x^2+8x+4x+16=160
2x^2+12x=160-16
2x^2+12x=144
2(x^2+6x)=144
X^2+6x=72
X^2+6x-72=0
X^2+12x-6x-72=0
X(x+12)-6(x+12)=0
(X-6)(x+12)
X=6
Or x=-12
Since age cannot be negative .
Therefore,
the girls present age is 6yrs and
Her sister's age is 12yrs.
Therefore,
(2x+4)(x+4)=160
2x^2+8x+4x+16=160
2x^2+12x=160-16
2x^2+12x=144
2(x^2+6x)=144
X^2+6x=72
X^2+6x-72=0
X^2+12x-6x-72=0
X(x+12)-6(x+12)=0
(X-6)(x+12)
X=6
Or x=-12
Since age cannot be negative .
Therefore,
the girls present age is 6yrs and
Her sister's age is 12yrs.
paras8160:
Tnx
Answered by
2
Let the girl's sister's age be x
The girl's age = 4x
According to qn,
(x+4)(4x+4) = 160
=> 4x^2 + 4x + 16x + 16 = 160
=> 4x^2 +20x -160+16 = 0
=> 4x^2 +20x-144 = 0
=> 4(x^2 + 5x- 36) = 0
=> x^2 +5x -36 = 0/4 = 0
=> x^2 +9x -4x -36 = 0
=> x(x+9) -4 (x+9) = 0
=> (x-4)(x+9) = 0
When x -4 = 0
=> x = 4
When x+9 = 0
=> x = -9
As age can never be negative,
the correct value of x = 4
So,
The girl's sister's age = 4
The girl's age = 4 x 2 = 8
Hope it helped :-)
#Supersonu
#Brainly Benefactor
The girl's age = 4x
According to qn,
(x+4)(4x+4) = 160
=> 4x^2 + 4x + 16x + 16 = 160
=> 4x^2 +20x -160+16 = 0
=> 4x^2 +20x-144 = 0
=> 4(x^2 + 5x- 36) = 0
=> x^2 +5x -36 = 0/4 = 0
=> x^2 +9x -4x -36 = 0
=> x(x+9) -4 (x+9) = 0
=> (x-4)(x+9) = 0
When x -4 = 0
=> x = 4
When x+9 = 0
=> x = -9
As age can never be negative,
the correct value of x = 4
So,
The girl's sister's age = 4
The girl's age = 4 x 2 = 8
Hope it helped :-)
#Supersonu
#Brainly Benefactor
Similar questions