Math, asked by sny7044eg, 3 months ago

A girl observes the angle of elevation of a mountain top to be 60° after walking directly away from it on level ground through 100m , the angle of elevation is 45°. Find the height of the mountain and the distance between the mountain and first position of the girl​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

  • Let the height of mountain AB be 'h' meter.

  • Let the girl is at point, observe the angle of elevation of the top of mountain B as 60°.

  • Let the distance between girl and foot of mountain in this position, AC = 'x' meter.

Now, the girl walk away 100 m from the point C.

  • Let new position is at point D such that CD = 100 m.

and

  • angle of elevation of the top of the mountain is 45°.

Now,

\rm :\longmapsto\:In  \:  \triangle  \: ABC

\rm :\longmapsto\:tan60 \degree \:  = \dfrac{AB}{AC}

\rm :\longmapsto\: \sqrt{3}  = \dfrac{h}{x}

\bf\implies \:h \:  =  \:  \sqrt{ 3} x \:  -  - (1)

Now,

\rm :\longmapsto\:In  \:  \triangle \: BAD

\rm :\longmapsto\:tan45 \degree \:  =  \: \dfrac{BA}{AD}

\rm :\longmapsto\:1 \:  =  \: \dfrac{h}{100 + x}

\rm :\longmapsto\:100 + x =  \sqrt{3} x  \:   \:  \:  \:  \:  \: \:  \:  \{using \: (1) \}

\rm :\longmapsto\: \sqrt{ 3} x - x = 100

\rm :\longmapsto\:x( \sqrt{3}  - 1) = 100

\rm :\longmapsto\:x = \dfrac{100}{ \sqrt{3} - 1 } \times  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 }

\rm :\longmapsto\:x = \dfrac{100( \sqrt{3}  + 1)}{3 - 1}

\rm :\longmapsto\:x = \dfrac{100( \sqrt{3} + 1) }{2}

\bf :\implies\:x = 50( \sqrt{3}  + 1)  \: meter-  -  - (2)

On substituting value of x in equation (2), we get

\rm :\longmapsto\:h \:  =  \:  \sqrt{3}  \times 50( \sqrt{3}  + 1)

\bf\implies \:h \:  =  \: 50(3 +  \sqrt{3} ) \: meter.

Explore more :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions