Math, asked by khushboomaharana06, 1 day ago

A glass cylinder with diameter 28 cm has water to a height of 10 cm. A metal cube of 9 cm edge is immersed in it completely. Calculate the height (up to 2 decimal place) by which water will rise in the cylinder. [Use pi=22/7] ​

Answers

Answered by mahitomar2572
5

Answer:

Suppose the water rises by h cm.

Volume of water displaced = Volume of the cube of edge 8 cm

πr

2

h=8

3

3.14×10

2

×h=8×8×8

h=1.6 cm

Answered by mathdude500
23

\large\underline{\sf{Solution-}}

Given that,

  • A glass cylinder with diameter 28 cm has water to a height of 10 cm.

  • A metal cube of 9 cm edge is immersed in it completely.

Let assume that height by which water level rises in the cylinder be h cm.

Now, we have

  • Radius of cylinder, r = 14 cm

  • Height of cylinder = h cm

  • Edge of cube, a = 9 cm

We know, Amount of water displaced in the glass cylinder is equals to volume of cube.

So,

\rm \: Volume_{(water displaced)} \:  =  \: Volume_{(Cube)} \\

\rm \: \pi {r}^{2}h \:  =  \:  {a}^{3} \\

\rm \: \dfrac{22}{7}  \times 14 \times 14 \times h \:  =  \: 9 \times 9 \times 9 \\

\rm \: 22  \times 2\times 14 \times h \:  =  \: 9 \times 9 \times 9 \\

\rm \: h \:  =  \: \dfrac{9 \times 9 \times 9}{44 \times 14}  \\

\rm\implies \:h \:  =  \: 1.18 \: m \: \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions