Physics, asked by gokulanup2, 7 months ago

A glass prism whose refracting angle is 72° and refractive index 1.33. Calculate the angle of minimum deviation for the parallel beam passing through the prism.
( given: sin36°=0.5878, sin47.2°=0.7336)​

Answers

Answered by Anonymous
20

Answer:

 \boxed{\mathfrak{Minimum \ deviation \ (\delta_m) = 22.4 \degree}}

Given:

Refractive angle (A) = 72°

Refractive index (μ) = 1.33

sin36° = 0.5878

sin47.2° = 0.7336

Explanation:

From Prism formula we have:

 \boxed{ \bold{ \mu =  \dfrac{sin( \dfrac{A +  \delta_m}{2} )}{sin \dfrac{A}{2} } }}

 \rm \delta_m \longrightarrow Minimum deviation

By substituting values in the equation we get:

 \rm \implies 1.33 =  \dfrac{sin( \dfrac{72 \degree + \delta_m}{2} )}{sin \dfrac{72 \degree}{2} }  \\  \\  \rm \implies 1.33 =  \dfrac{sin( \dfrac{72 \degree + \delta_m}{2} )}{sin36 \degree}  \\  \\  \rm \implies sin( \dfrac{72 \degree + \delta_m}{2} ) = 0.5878 \times 1.33 \\  \\ \rm \implies sin( \dfrac{72 \degree + \delta_m}{2} ) = 0.781774 \\  \\  \rm \implies sin( \dfrac{72 \degree + \delta_m}{2} )  \approx sin47.2 \degree \\  \\  \rm \implies \dfrac{72 \degree + \delta_m}{2}  \approx 47.2 \\  \\  \rm \implies  \delta_m  \approx 2 \times 47.2 \degree - 72 \degree \\  \\  \rm \implies  \delta_m  \approx 94.4 \degree - 72 \degree \\  \\ \rm \implies  \delta_m  \approx 22.4 \degree

Similar questions