Physics, asked by BrainlyHelper, 1 year ago

A glass surface is coated by an oil film of uniform thickness 1.00 × 10−4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Find the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence

Answers

Answered by prmkulk1978
4

Given:

Wavelength of  light used λ=400×10⁻⁹ to 750×10⁻⁹ m

Refractive index of oil, μoil, is 1.25 and that of glass, μg, is 1.50.

The thickness of the oil film,

d=1×10⁻⁴cm=10⁻⁶m,

The condition for the wavelengths which can be completely transmitted through the oil film is given by

λ=2μd/(n+1/2)  =2×10⁻⁶×1.25×2/2n+1  

=5×10⁻⁶/ 2n+1 m

⇒ λ=5000/2n+1 nm

Where n is an integer.

For wavelength to be in visible region i.e (400 nm to 750 nm)

When n = 3, we get,

λ=5000/2×3+1 =5000/7=714.3 nm

When, n = 4, we get,

λ=5000/2×4+1  =5000/9=555.6 nm

When, n = 5, we get,

λ=5000/2×5+1  =5000/11=454.5 nm

Thus the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence are 714 nm, 556 nm, 455  nm.

Answered by Niranjan7262
1

Answer:

thanks thanks for Hindi English work ok Rajan stomach in this Gmail of as brainlist I will follow you wish you wish you wish you wish I am Niranjan

Similar questions