Math, asked by SantaClausBaccho, 3 months ago

A godown has dimensions 7m × 4.5 m × 2m . How many cartons of dimensions 70cm × 22.5 cm × 40cm can be stored in it ?​

Answers

Answered by Gautam2573
0

Answer:

oook i will try and follow mr

Answered by thebrainlykapil
115

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • A godown has dimensions 7m × 4.5 m × 2m . How many cartons of dimensions 70cm × 22.5 cm × 40cm can be stored in it ?

 \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

\underbrace\red{\boxed{ \sf \blue{ Dimensions \: of \: Godown }}}

  • Length = 7m = \sf\green{ 7 \: \times \: 100cm\: = \:\blue{\fbox\orange{700cm}}  }
  • Breadth = 4.5m = \sf\green{ 4.5 \: \times \: 100cm\: = \:\blue{\fbox\orange{450cm}}  }
  • Height = 2m = \sf\green{ 2 \: \times \: 100cm\: = \:\blue{\fbox\orange{200cm}}  }

 \\

\underbrace\red{\boxed{ \sf \blue{ Dimensions \: of \: Carton }}}

  • Length = 70cm
  • Breadth = 22.5cm
  • Height = 40cm

 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume  \: = \: Length \:   \times  \: Breath \times  \:  Height }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf \red{Volume \: of \: godown \:  =  \: 700 \:  \times  \: 450 \:  \times  \: 200 \:  {cm}^{3}  }} \\

\qquad \quad {:} \longrightarrow \sf{\sf \blue{Volume \: of \: Carton \:  =  \: 70 \:  \times  \: 22.5 \:  \times  \: 40 \:  {cm}^{3}  }} \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Number  \: of \: Cartons \:  = \: \frac{Volume \: of \: Godown}{Volume \: of \: Cartons}   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf {Number \: of \: Carton \:  =  \: \frac{ 700 \:  \times  \: 450 \:  \times  \: 200}{70 \:  \times  \:22.5  \times  \: 40}}} \\

\qquad \quad {:} \longrightarrow \sf{\sf {Number \: of \: Carton \:  =  \: \frac{ 70\cancel0 \:  \times  \: 450 \:  \times  \: 20\cancel0}{7\cancel0 \:  \times  \:22.5  \times  \: 4\cancel0}}} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Number \: of \: Cartons \: = \: 1000 \: Cartons   }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ No. \: of \: Cartons \: that \: can \: be \: stored \: in \: Godown \: = \underline {\underline{ 1000}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

★ Additional Info :

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions