Math, asked by sharmasangita8970, 2 days ago

A godown is in the form of cuboid of measure 60m *40m* 30m.how many cubical boxes can be stored in it if side of I box is 10cm ​

Answers

Answered by sweethag1234
3

Answer:

90,000

Step-by-step explanation:

this is the correct answer for ur questions

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given that, A godown is in the form of cuboid of measure 60m × 40m × 30m.

It means,

  • Length of Cuboid, l = 60 m

  • Breadth of Cuboid, b = 40 m

  • Height of Cuboid, h = 30 m

We know, Volume of cuboid of length l, breadth b and height h, is given by

\boxed{ \rm{ \: \: Volume_{(Cuboid)} \:  =  \: l \:  \times  \: b \:  \times  \: h \:  \: }} \\

So,

\rm \: Volume_{(Godown)} \:  =  \: 60 \times 40 \times 30 \\

\rm\implies \: \boxed{ \rm{ \:\: Volume_{(Godown)} = 72000 \:  {m}^{3}  \:  \:  \: }} -  -  - (1) \\

Now, Further given that

  • Side of cubical box, a = 10 cm = 0.1 m

We know, Volume of cube of edge a units is given by

\boxed{ \rm{ \:Volume_{(Cube)} \:  =  \:  {a}^{3} \:  \: }} \\

So,

\rm \: Volume_{(Cubical \: box)} =  {(0.1)}^{3}  \\

\bf\implies \:Volume_{(Cubical \: box)} \:  =  \: \dfrac{1}{1000} \:  {m}^{3}  \\

Let assume that n number of cubical boxes of side 10 cm can be stored in godown.

Thus,

\rm\implies \:n \times Volume_{(Cubical \: box)} = Volume_{(Godown)} \\

\rm \: n \times \dfrac{1}{1000}  = 72000 \\

\rm\implies \:\boxed{ \rm{ \:n \:  =  \: 72000000 \:  \: }} \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions